NGA-LTER Seward Line CRUISE PLAN April, May Sept 1-9, 2020

Funding Source: NSF, NPRB, EVOS, AOOS, UAF

Chief Scientist: Russ Hopcroft*, Zooplankton, rrhopcroft@alaska.edu

Institute of Marine Science

University of Alaska

Fairbanks, AK 99775-1080 Phone: 907-474-7842 Mobile 907-699-3253

Co-Chief Scientist: Jenn Questel, Zooplankton, IMS-UAF (jmquestel@alaska.edu)

Scientific Personnel:

3 Emily StidhamZooplankton (nights), UAF4 Delaney ColemanZooplankton (nights), UAF5 Bette SmithZooplankton (nights), UAF

6 Suzanne Strom
7 Megan O'Hara
8 Kelly Bright
9 Ana Aguilar-Islas
10 Marissa Despins
11 Tom Kelly
12 Isaac Reister
Phytoplankton/Microzoop, WWU
Phytoplankton/Mic

13 Ben Lowin Optics and Gasses

14 Kathy Kuletz Seabirds/Mammals, FWS

Scientific Purpose:

This cruise represents a continuation of sampling begun in fall 1997 under the NSF/NOAA NE Pacific GLOBEC program, and subsequently a consortium of the North Pacific Research Board (NPRB), the Alaska Ocean Observing System (AOOS), and the Exxon Valdez Oil Spill Trustee Council's (EVOSTC) Gulf Watch. This is the third cruise of the NSF's Northern Gulf of Alaska Long-term Ecological Program (NGA-LTER). The scientific purpose of the core Seward Line project is to develop an understanding of the response and resiliency of this marine ecosystem to climate variability. This cruise marks the 24th consecutive spring cruise for the Seward Line in the NGA, including Prince William Sound (PWS), and the 50th year of observations at GAK1.

Special Note: This cruise will be conducted during the COVID-19 Pandemic. Special permissions from UAF, UNOLS and NSF, and numerous accommodations were required to sail. Among them was reduction to the scientific team to avoid bringing the virus onto the *Sikuliaq* (which is already in quarantine), along with the shortened scope of some cruise activities. Many teams are short-handed and aiding other teams when you have free time will often be required. The entire scientific team will complete a two-week quarantine either in Seward or in their homes prior to driving directly to the ship.

Cruise Objectives

- 1. Determine thermohaline, velocity, light, and oxygen structure of the NGA shelf.
- 2. Determine macro- and micro-nutrient structure of the NGA shelf.
- 3. Determine particle structure and flux rates of the NGA shelf.
- 4. Determine phyto- and microzooplankton composition, biomass distribution, and productivity.
- 5. Determine the vertical and horizontal distribution and abundance of zooplankton species.
- 6. Conduct surveys of Seabirds and Marine Mammals
- 7. Determine carbonate chemistry (i.e. Ocean Acidification) at selected intensive stations
- 8. Provide at-sea experience for students within the UAF system
- 9. Share the experience through outreach/media activities.

SAMPLING

The overall approach of the cruise is to occupy the Seward Line, Kodiak Line and Middleton Line transects across the shelf and a string of stations within western PWS. Operations are generally divided into distinct day and night tasks, thus requiring each station to be occupied twice. This structure avoids each discipline needing to supply 2 shifts of scientists and ensures all organisms – especially larger diel-migrating zooplankton – are captured with minimal time-of-day bias. During each morning we will typically occupy a selected "intensive" station that involves a greater number and range of collections than the other stations occupied that day. Station profiles are supplemented by underway measurements.

DAYTIME ACTIVITIES:

- 1. Occupy the various hydrographic stations and collect vertical CTD-fluorescence-PAR and particle profiles (see **Figures & Tables**).
- Collect discrete bottle samples at these stations for nutrients, chlorophyll and microzooplankton. Chlorophyll Size Fractionation (20 μm) will be done at all whole numbered Seward Line and most other stations. Macronutrients samples will be pre-filtered prior to freezing. Chlorophyll will be extracted on fresh filters without freezing.
- 3. Measure the dissolved carbonate chemistry along the Seward Line and within Prince William Sound from bottle casts at selected intensive stations (tentatively Odd numbered GAK, KIP2, PWS2).
- 4. CalVet Net casts will be done (CalVet frame has 4 nets) after most the CTD casts to 100m. (NO CALVETs at the "i" stations).
- 5. At intensive stations an additional CTD cast will collect water to be used for primary production incubations and carbonate chemistry.
- 6. A trace-metal clean CTD cast will also be undertaken at all intensive stations, and other odd-numbered stations as time permits.
- 7. We will deploy a tow-body for sampling near-surface iron during the day (and on long transits). Sampling will occur just prior arriving to or just after departure. (It is hoped that this "fish" can simply be left in the water while on station rather than constantly retrieved and deployed).
- At intensive stations there will be an extra Calvet collection, and along the Seward Line plus PWS2 there will be a vertical deployment of the 150 μm Multinet to 200m. Some of this material will be used for live sorting as well as post-cruise molecular analysis.

- 9. We will do one deep Multinet tow (to maximum 1200 m) near the end of the Seward Line and one at PWS2 (800m). This normally happens during days but may be done at night in conjunction with Multinet work at those stations if time permits.
- 10. We will attempt to deploy drifting sediment traps at a subset of the intensive stations, the number to be determined by how they fit into daily logistics. Traps will ideally be deployed for 24 (or 48) hrs. Small boat operations may help simply logistics if traps move faster/further than anticipated

NIGHTTIME ACTIVITIES:

- 1. A towed 505-µm MOCNESS will be used to collected depth-stratified samples along the Seward Line, and at selected PWS Stations to 200m. (A multinet will be available as backup).
- 2. On the Middleton and Kodiak Lines bongo net collections will replace those of the MOCNESS. We hope to complete bongo nets along the Seward Line in addition to the MOCNESS, dependent upon logistics.
- 3. Deep-multinet tows may occur during the night shift as time permits (see #9 above).

Sampling Strategy

In general, we estimate 1.5 days for PWS and 4-5 days for the Seward Line, and two days for each of the Middleton and Kodiak transects. It is important that all MOCNESS collections (with the exception of those to 600m) be completed during darkness to allow comparison to prior years. We anticipate that 4-5 MOCNESS and/or Bongos can be conducted per night: sampling starts just after dusk and stops just before dawn, and can be extended slightly when overcast. There is always a typically a greater period of light available than of darkness, so execution of daytime stations and activities are designed around being in position to commence night sampling as soon as it is sufficiently dark. Sediment traps are flexible in their deployment timing.

Hazmat: (tentative)

Formaldehyde – 20L carboy Lugol's solution (1L) Ethanol – 40L Mercuric Chloride (for DIC fixation) Acetone – 16L Glutaraldehyde (10%) – 500 ml Oxygen Fixation (Sodium hydroxide. DAPI stain solution – 100 ml Sulphuric acid, Manganous Chloride) Liquid N_2 – one 30-L dewar

CRUISE ACTIVITY SCHEDULE

4/6 – WWU team flies into ANC, begins quarantine in SWD. UAF team begin home quarantine.

4/19 - Ana leaves for Seward and TMC setup. UHaul loaded at UAF

4/20 - Russ's Van and UHaul leave UAF, ~8am, arrive ship ~5pm - we will sleep onboard

4/21-22 – Begin setup at ~8am SMC dock. Depart if possible evening of 22nd (do RES2.5).

4/23 – Sikuliag definitely underway by 6am

5/6 – Sikuliag returns to dock by mid afternoon – packup and demob begin.

5/7 – Science party departs for Fairbanks by early afternoon using vans.

Transport:

Russ' Van: Jenn, Delaney, Emily, Bette, Ben,

Isaac (FAI-SWD), Russ (SWD-FAI)

Rental car: Suzanne, Megan, Kelly UAF Van: Ana, (+1 person return only)

UHaul (SWD-FAI): Russ, Tom. Personal transport: Kathy

 Table 1. STANDARD STATIONS (intensive stations highlighted)

Latitude N Longitude W								
(degrees, minutes)		(degrees, minutes)		Station Name				
Resurrection Bay Station								
60	1.5	149	21.5	RES2.5				
Seward Line								
59	50.7	149	28	GAK1				
59	46	149	23.8	GAK1I				
59	41.5	149	19.6	GAK2				
59	37.6	149	15.5	GAK2I				
59	33.2	149	11.3	GAK3				
59	28.9	149	7.1	GAK3I				
59	24.5	149	2.9	GAK4				
59	20.1	148	58.7	GAK4I				
59	15.7	148	54.5	GAK5				
59	11.4	148	50.3	GAK5I				
59	7	148	46.2	GAK6				
59	2.7	148	42	GAK6I				
58	58.3	148	37.8	GAK7				
58	52.9	148	33.6	GAK7I				
58	48.5	148	29.4	GAK8				
58	44.6	148	25.2	GAK8I				
58	40.8	148	21	GAK9				
58	36.7	148	16.7	GAK9I				
58	32.5	148	12.7	GAK10				
58	23.3	148	4.3	GAK11				
58	14.6	147	56	GAK12				
58	5.9	147	47.6	GAK13				
57	56.6	147	39	GAK14				
57	47.5	147	30	GAK15				
	Prin	ice William Sou	ınd Stations					
60	7.5	147	50	KIP0				
60	16.7	147	59.2	KIP2				
60	22.78	147	56.17	PWS1				
60	32.1	147	48.2	PWS2				
60	40	147	40	PWS3				
60	4925	147	24	PWSA				
60	45	147	14	PWSB				
60	38.1	147	10	PWSC				
60	31.5	147	7.6	PWSD				
60	24.3	147	58.3	PWSE				
60	24	146	45	PWSF				
Columbia Glacier (unlikely)								
61	7.4	147	3.8	CG0				
60	59.5	147	4.2	CG1				
60	57.6	147	5.9	CG2				

Icy Bay							
60	16.3	148	21.7	IB0			
60	14.5	148	20.1	IB1			
60	16.3	148	14	IB2			
	Hogan Bay Line (unlikely)						
60	11.57	147	42	HB1			
60	10.754	147	38.5	HB2			
60	9.855	147	34.508	HB3			
60	8.807	147	30.04	HB4			
Montague Strait Line							
59	57.257	147	55.602	MS1			
59	56.6	147	53.7	MS2			
59	55.9	147	51.4	MS3			
59	55.2	147	49.7	MS4			

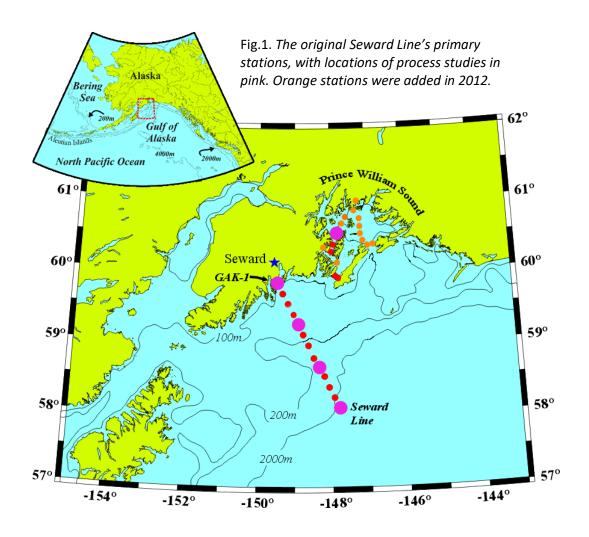


Table 2. New LTER Stations (intensive stations highlighted)

	atitude N		itude W	0				
(degr	ees, minutes)	(degrees, minutes)		Station Name				
Kodiak Line								
58	14.7	151	35.4	KOD1				
58	7.8	151	23.07	KOD2				
58	0.9	151	10.74	KOD3				
57	54	150	58.17	KOD4				
57	47.1	150	45.6	KOD5				
57	40.26	150	32.97	KOD6				
57	33.42	150	20.34	KOD7				
57	26.37	150	7.95	KOD8				
57	19.32	149	55.56	KOD9				
57	12.27	149	43.17	KOD10				
	Caj	pe Suckling Lin	e (unlikely)					
59	56.35	143	53.5	CS1				
59	53.85	143	53.5	CS1e				
59	51.35	143	53.5	CS1i				
59	48.85	143	53.5	CS1n				
59	46.35	143	53.5	CS2				
59	41.35	143	53.5	CS2i				
59	36.35	143	53.5	CS3				
59	31.35	143	53.5	CS3.5				
59	26.35	143	53.5	CS4				
59	16.35	143	53.5	CS5				
		Middleton Isla	nd Line					
60	15	145	30	MID1				
60	10.5	145	34.5	MID1i				
60	6	145	39	MID2				
60	1.5	145	43.5	MID2i				
59	57	145	48	MID3				
59	52.5	145	52.5	MID3i				
59	48	145	57	MID4				
59	43.5	146	1.5	MID4i				
59	39	146	6	MID5				
59	34.5	146	10.5	MID5i				
59	30	146	15	MID6				
59	25.7	146	10	MID6i				
59	23	146	18	MID7				
59	18.267	146	15	MID7i				
59	13.534	146	12	MID8				
59	4.067	146	6	MID9				
58	54.6	146	0	MID10				
50	J+.U	140	U	טוטוועו				

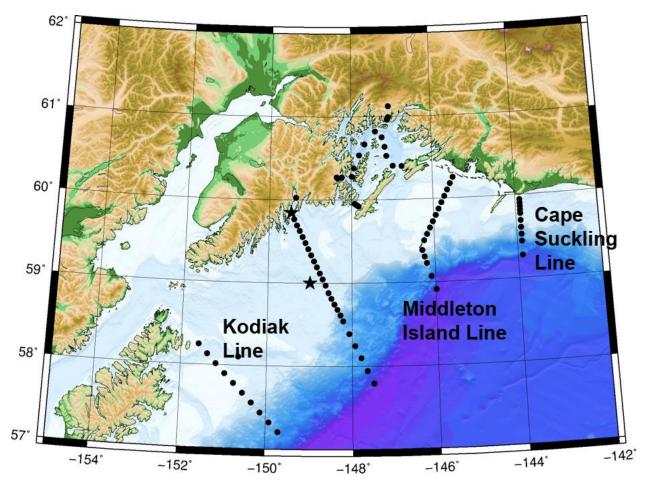


Fig. 2. NGA-LTER sampling stations highlighting 3 new transects line near Kodiak, Middleton Island and Cape Suckling