

Northern Gulf of Alaska Long-Term Ecological Research

**Cruise Report May 2020** 

Cruise ID: SKQ2020-06S (SKQ-S20)

Funding Sources: NSF, NPRB, AOOS, EVOS/GWA

### Purpose:

The NGA is a highly productive subarctic Pacific marine biome where intense environmental variability has profound impacts on lower trophic level organisms and community dynamics that, directly or indirectly, support the iconic fish, crabs, seabirds and marine mammals of Alaska. In the NGA, a pronounced spring bloom and regions of sustained summer production support a stable base of energy-rich zooplankton grazers that efficiently transfers primary production up the food chain and a substantial sinking flux of organic matter that exports carbon to the sea bottom communities. The LTER research cruises examine features, mechanisms and processes that drive this productivity and system-wide resilience to understand how short- and long-term climate variability propagates through the environment to influence organisms.

This cruise represents a continuation of sampling begun in fall 1997 under the NSF/NOAA NE Pacific GLOBEC program, and subsequently a consortium of the North Pacific Research Board (NPRB), the Alaska Ocean Observing System (AOOS), and the Exxon Valdez Oil Spill Trustee Council's (EVOSTC) Gulf Watch. This is the third year with expanded domain, measurements and investigators under the NSF's Northern Gulf of Alaska Long-term Ecological Program (NGA-LTER). This cruise marks the 23nd consecutive spring cruise for the Seward Line in the NGA, including Prince William Sound (PWS), and the 50th year of observations at GAK1.

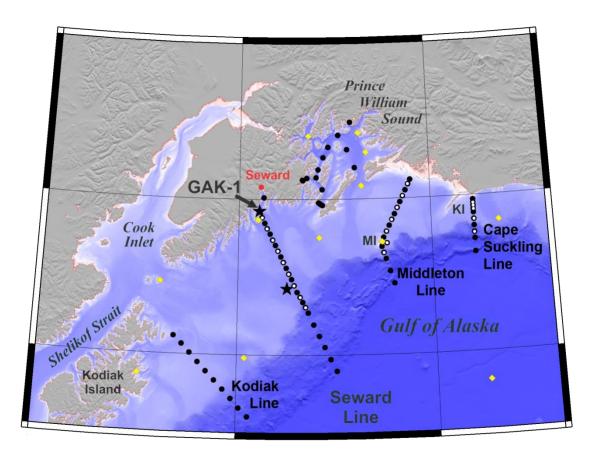



Figure 1. The LTER sampling stations. CTD casts without water sampling as open symbols. Yellow diamonds represent locations of meteorological data from NOAA buoys or ground stations. Star shows position of LTER mooring. Cape Suckling is low priority.

## **Daily summary**

Saturday May 2 – departed Fairbanks at 8am – arrived Seward at 5pm and spent evening organizing items in warehouse.

Sunday May 3 – Day 1 – loaded ship and setup, including checks on SUNA calibration – plans to depart at 18:00 were postponed due to problem with bow thruster that rendered it non-operational.

Monday May 4 – Day 2 – Bow thruster repaired. Got underway at 6:30am. Sampled RES 2.5 @ ~7:10 with CTD and Calvet, then GAK1 @10:15 with CTD and 2 Calvets. Winds and seas were much higher than expected, so after conducting GAK1i CTD and based on the weather forecast, we transited to the outer portion of the Seward Line to start night sampling at 22:00 at GAK8. Multinets were conducted at GAK8-11 (a recast was required at GAK11), ending at 05:30 (near dawn). We repositioned for Day work.

Tuesday May 5 – Day 3 – CTD at GAK8 began at ~09:00 – we worked outward with CTD and Calvets (2 CV at GAK9) ending GAK11 at 19:00. To accommodate 1000 m depth limitation of PAR sensors, a shallow and deep cast were required at GAK10 & GAK11. Nightwork began at 22:15 at GAK12, and we worked Multinets out to GAK15 ending at 5:15.

Wednesday May 6 – Day 4 – CTDs at GAK15 began at ~06:30. We worked inward with CTD and Calvets (2 CV at GAK15) ending GAK12 at 19:00, again with a shallow and deep cast at each station. We spend the evening running to PWS to avoid an incoming storm.

Thursday May 7 – Day 5 – CTDs started ~09:00 at KIP2, and we worked northward with CTD and Calvets (2 CV at GAK9) ending PWS3 at ~16:00. We did bathymetric mapping until beginning nightwork at 22:00 working southward from PWS3 to KIP2 ending ~05:00. We conducted some mapping east of the Pleiades, then headed to KIP0.

Friday May 8 – Day 6 – CTDs started ~08:30 at KIP0, then we headed to Montague Strait, conducting CTDs at all four stations, with a Calvet at only MS2, ending at ~13:30. We started transiting back to the Seward Line in high seas, arriving GAK7 at 22:00. Multinets were conducted northward GAK7-5, ending at 04:20. The GAK6 multinet was recast due to a winch glitch that resulted in bottom contact.

Saturday May 9 – Day 7 – CTDs began 08:00 at GAK4i and worked southward with CTDs and Calvets (2 CV at GAK5) ending GAK7i at ~16:00, the GEO1 mooring was redeployed at 17:40 followed by a CTD calibration cast. We arrived GAK4 at ~21:00 to conduct a Calvet and CTD, then began Multinets at 22:15 heading northward to GAK1, ending at 04:30. We transited to GAK 3i

Sunday May 10 – Day 8 – CTDs began ~07:00 at GAK3i and worked southward with CTDs and Calvets. We ended at GAK1 at ~15:00 with 2 Calvets. The GAK1 mooring was recovered at 16:30 and redeployed by 18:30. We reached Seward at ~21:00 to layoff wait for pier slip to become available.

Monday May 11 – Science party read final chlorophylls, packed up and started travel to Fairbanks at ~11:00

Weather this cruise was marginal until the last 2 working days. The Spring Bloom was underway throughout the region with 2 large mesoscale eddies on either side of the outer line disturbing normal cross-shelf gradients.

### **Physics Report:**

PI: Seth Danielson

On this cruise we conducted 43 casts for water column hydrography at 36 stations (Fig. 1) using a 24 x 12 liter bottle rosette. Bottle trips were made at standard depths: 0, 10, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, 500, 750, and 1000 m and within 5 m of the bottom when the bottom depth was less than 1000 m. The SBE9-11 CTD was outfitted with pressure, dual temperature, dual conductivity and dual oxygen sensors. Ancillary sensors included a WetLabs fluorometer, a WetLabs C-Star transmissometer, a Biospherical PAR sensor, and a Benthos altimeter. One channel provided power to a self-logging SUNA nitrate sensor. Due to depth limitations of the CTD's PAR sensor, at GAK10-15 a shallow cast was undertaken for the light profile, followed immediately with a regular cast to 1500m.

The CTD stations were occupied along the Seward Line transect plus stations in western Prince William Sound, including stations across Montague Strait and along Knight Island Passage (Fig. 2).

Ocean velocity data was collected using Teledyne RDI 75 kHz and 150 kHz Ocean Surveyor instruments. The 75 kHz instrument collected data using a 16 m bin thickness and the 150 kHz instrument collected data in 8 and 4 meter bins at different times through the cruise. The associated trackline is shown in Figure 3. Due to hull depth and bubble sweep along the hull, the first good bin of the 150 kHz ADCP was typically at 18 m below the surface or deeper, so we generally failed to capture near-surface currents.

We ran the ADCPs triggered from the K-sync system so as to provide an interference-free time interval for the EK-60 fisheries

acoustics pings. Over shallow waters (< 1000 m depth) all acoustic instruments could be run simultaneously. In deep water (>1000 m depth) the time for the return acoustic pings become exceedingly long so we ran in one of two modes in deeper water. In "night operations mode" we would secure the EM302 mulitbeam during night station work and operate only the ADCP and EK-60 so as to have concurrent acoustics data alongside the nighttime trawl operations. In the "day operations mode" we would secure the EK-60 and run the EM-302 so as to map the seafloor along our trackline.

Regions previously unmapped by multibeam acoustics were

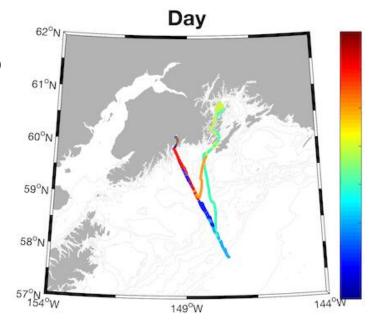
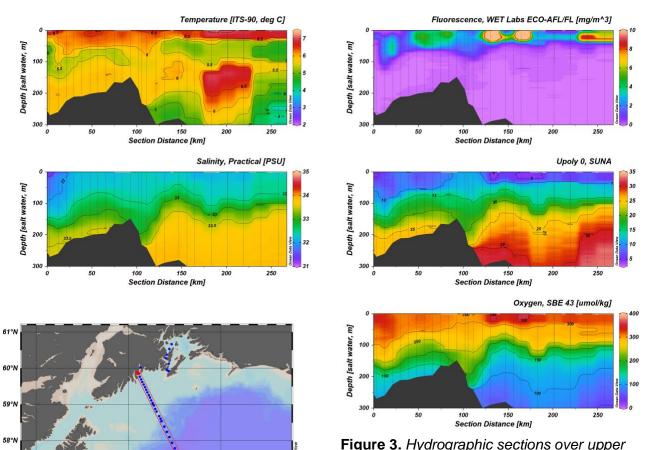




Figure 2. Cruise track for NGA-LTER May 4-10, 2020

preferentially selected for ship routes in order to map uncharted areas of the seafloor. Many portions of the cruise occurred in previously unmapped regions, including especially portions of Prince William Sound. Future cruises will continue to fill in mapping coverage gaps.

Other underway data collected include the ship's operational data, meteorological data and ocean surface data. Operational data of ships equipment (e.g., navigation and winch payout and tensions) were also logged. Navigation data parameters include GMT date time, latitude, longitude and water depth. Atmospheric data parameters included atmospheric pressure, wind speed/direction, air temperature, humidity, CO<sub>2</sub>, short- and long-wave downwelling irradiance, and PAR. Surface seawater underway data samples included temperature, salinity, chlorophyll a fluorescence, phycoerytherin, partial pressure of CO<sub>2</sub>, and nitrate.

Two nitrate dataloggers were used on the cruise. An ISUS instrument was plumbed into the underway uncontaminated seawater throughflow system that feeds the thermosalinograph sensors. This instrument was set to take three samples every five minutes, the bulb on this instrument failed during the cruise (May 7), but replacement was not possible because the spare bulb had not arrived prior to cruise departure. The second nitrate sensor was a SUNA instrument strapped to the CTD frame. The SUNA was powered by a stand-alone battery pack that was energized when the CTD sent power to the bulkhead connectors. This dataset was stored internally to the SUNA and its full data will require a matching of dataset time stamps to align the nitrate profile with the rest of the CTD profile, however a simple analog signal provides preliminary estimates.



155°V

150°W

145°W

300 m of the Seward Line, May 2020.

Hydrographic data showed the water column had begun to stratify along the Seward Line (Fig.3), with a bloom underway in at the shelf break and far offshore, and less so at the midshelf, that was drawing down nitrate toward limiting levels in surface waters. Depression of temperatures from GAK11-13 reflects sampling through the edge of a mesoscale eddy located at the shelf-break. Differences in stratification intensity on the inner line (GAK1-7i) reflect a break in time, with the inner line completed immediately after passage of a gale-force storm. As is typical, dissolved oxygen declined rapidly below 100m in oceanic waters.

Compared to the 23-year record along the Seward Line, temperatures averaged across the upper 100 m of the line were at the long-term mean (Fig.4). Hydrographic anomalies along the oldest parts of the line (GAK1-13) showed above average temperatures at depth associated with the shelf-break eddy, and positive salinity anomalies at depth outside the eddy (Fig 5).

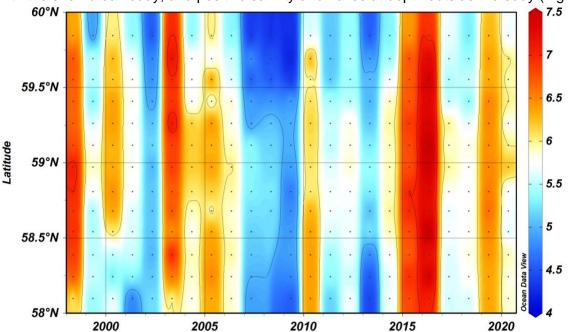



Figure 4. Average temperature of the upper 100m along the Seward Line during early May

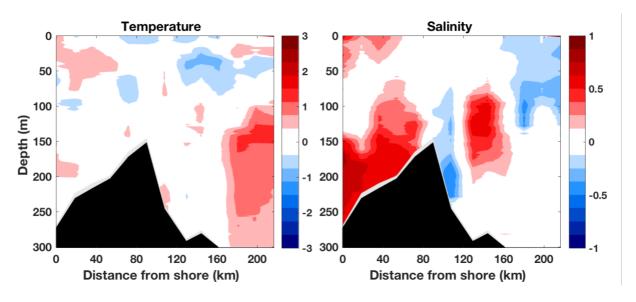



Figure 5. Temperature and salinity anomalies along the Seward Line, May, 2020.

Satellite data from just before and just after the cruise show the rapid increase in surface temperatures as stratification was being established (Fig. 6). Sea surface height revealed 4 active mesoscale eddies present in the Gulf with two moving slowly along the shelf break and flanking the outer Seward Line. These feature contributed to a complex patchwork of blooms and non-blooms across the NGA shelf.

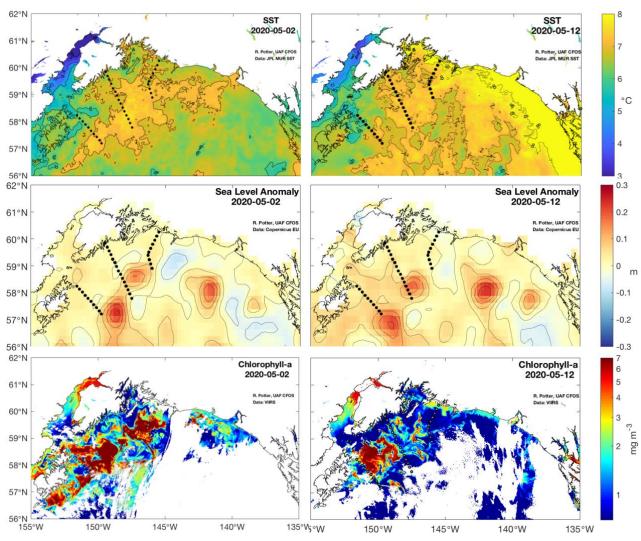
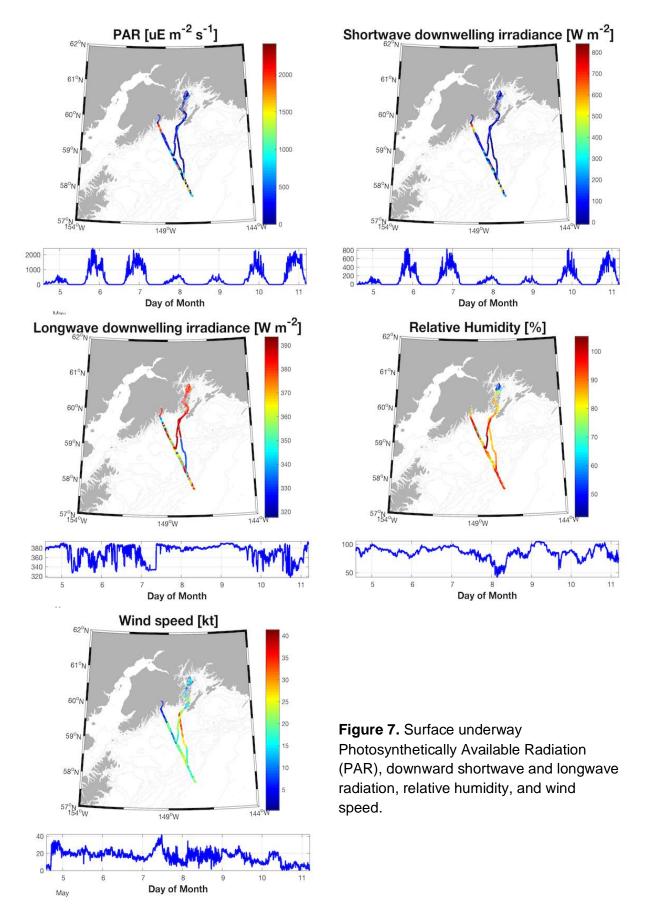




Figure 6. Remote sensing images from the cruise period

Underway data recorded the generally cloudy nature of the cruise and the passage of storms at the beginning of the cruise as well as May 7 when we sought shelter in PWS (Fig.7). Underway Sea surface temperature was consistent with satellites, generally around 7-8 °C, and the depression of salinity within Prince William Sound and the ACC (Fig.8). Air temperatures were typically between 6 and 9 °C during the cruise.



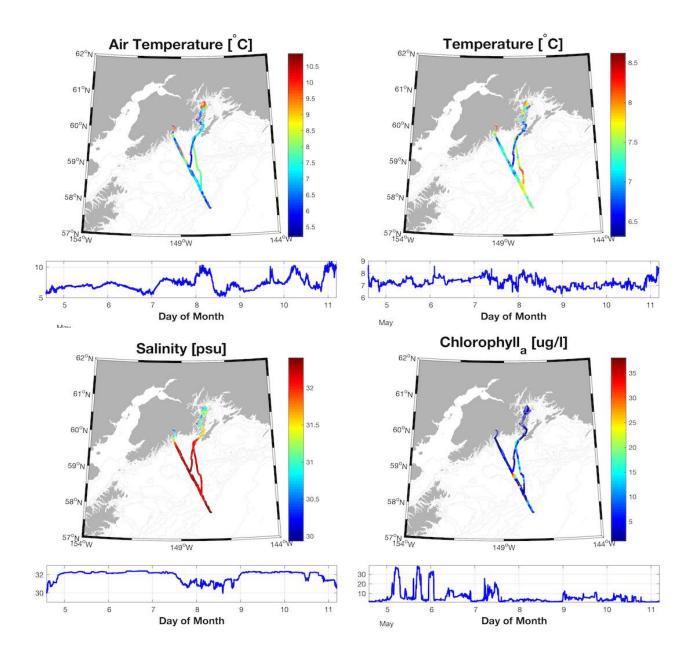



Figure 8. Surface underway air and water temperature, salinity, and atmospheric pressure.


### Mooring operations.

During SKQ202006S, we recovered and re-deployed mooring GAK1 and we deployed mooring GEO1. This was the 21st deployment of mooring GAK1 since 1998. The mooring monitors the temperature and salinity of the Alaska Coastal Current at 6-7 depths from 20 m below the surface to just above the seafloor at 250 m depth. This was the 2nd deployment of mooring GEO1. The new configuration of GEO1 is based on a subsurface taut-wire mooring scheme to avoid wire strum and motion caused by the previous surface float.

### Mooring deployments:

| Station                | Latitude      | Longitude      | Date/Time               |
|------------------------|---------------|----------------|-------------------------|
| GAK1-20 stern position | 59 51.1992' N | 149 30.0660' W | 10-May-2020 18:10 Local |
|                        |               |                | 11-May-2020 02:10 GMT   |
| GEO1 stern position    | 59 00.8253' N | 148 41.4079' W | 09-May-2020 17:33 Local |
|                        |               |                | 10-May-2020 01:33 GMT   |

Based on the 2019 deployment, we expect a 20 m fallback of the anchor after the anchor is dropped. The final target GEO1 location is 59 0.8358' N, 148 41.412' W.



Mooring GEO1 prepared for deployment.



Mooring GAK1-2020 prepared for deployment.



Mooring GAK1-2019 recovered instrumentation.

### Macro- and Micronutrient sample collection and processing

PI: Ana M. Aguilar-Islas

The goal of this field effort was to determine ambient distribution of dissolved inorganic macronutrients (nitrate, nitrite ammonium, phosphate, and silicic acid). Sampling for the micronutrient iron was not undertaken due to insufficient personnel and shifting effort to accomplish sampling of core biological parameters for the phytoplankton and microzooplankton component (see below). Nutrient distributions in conjunction with hydrography are used to determine resource variability to the phytoplankton community in space and time and to identify the relative importance of various processes in supplying nutrients to surface waters. A subset of samples for dissolved oxygen for sensor calibration analysis was also collected during this field effort.

Sample collection and processing for macronutrient analysis:

Filtered seawater samples were collected from surface to a depth of 1500 m from 23 vertical profiles using the Sikuliaq CTD rosette bottles (see Table 1). Samples were filtered through 0.45 um cellulose acetate filter disks using a syringe, and were kept frozen (-80 °C) following collection. In total, 307 samples were collected for nutrient analysis.

**Table 1 Nutrient Sample Collection** 

Intensive stations are in bold. Stations are listed in the order in which they were sampled

| STATION   | #       | STATION     | # samples |
|-----------|---------|-------------|-----------|
|           | samples |             |           |
| RES 2.5-a | 13      | PWS2        | 14        |
| GAK1-a    | 13      | PWS3        | 14        |
| GAK8      | 13      | MS2         | 11        |
| GAK9      | 14      | GAK5        | 11        |
| GAK10     | 16      | GAK6        | 10        |
| GAK11     | 16      | GAK7        | 12        |
| GAK15     | 16      | GEO         | 12        |
| GAK14     | 16      | GAK4        | 11        |
| GAK13     | 16      | GAK3        | 11        |
| GAK12     | 16      | GAK2        | 12        |
| KIP2      | 14      | GAk1-b      | 13        |
| PWS1      | 13      |             |           |
|           |         | GRAND TOTAL | 307       |

Preliminary nutrient results from GAK5 to GAK15 show lower nutrient levels in surface waters compared to 2019 (Figure 12) that reflect the further progression of the spring bloom sampled later in the season during 2020.

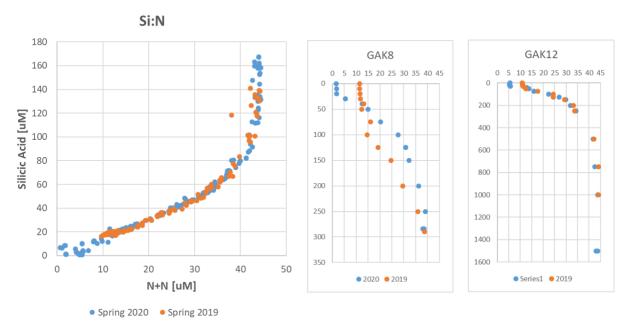



Figure 12. Relationship between Si and N along GAK 5 to GAK 15 showing further drawdown of these nutrients in surface waters during 2020. Examples of N+N profile at GAK 8 and GAK 12 showing further drawdown at surface in 2020 as well as differences in subsurface N+N at the midshelf (GAK 8) influenced by differences in hydrography.

### Sample collection for dissolved oxygen analysis:

Unfiltered seawater samples for the analysis of dissolved oxygen were collected in an alternating fashion from the surface and the bottom depths from CTD casts. These samples will be analyzed at the Ocean Acidification Research Center (OARC) in Fairbanks, and will be used to calibrate the CTD oxygen sensor and sensors on moorings. A total of 23 samples were taken during the cruise.

#### **General Notes**

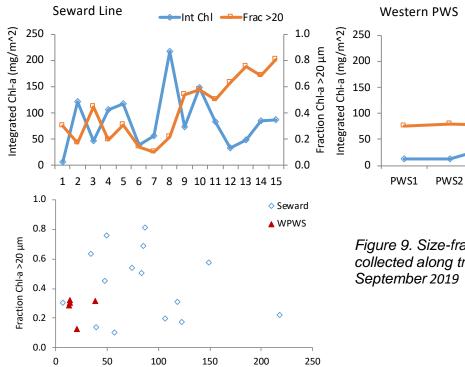
We had a successful cruise. The deck crew provided excellent support and their help ensure the success of our operations. The marine technicians also provided excellent support throughout the cruise. The crew was always helpful responding promptly to requests in a happy and professional manner. Laboratory spaces were adequate, the ship's deck gear, -80 °C freezer and refrigerator were in good working condition. Internet access was a challenge at times. The quality of the food was excellent.

# **Carbonate Chemistry**

PI: Claudine Hauri, Participant: None

### **Particles**

PI: Andrew McDonnell, Participant: None


# Phytoplankton and Microzooplankton

PI: Suzanne Strom Participants: None

Phytoplankton biomass: Phytoplankton biomass was characterized by size-fractionated chlorophyll at all non-intermediate shelf stations and most PWS stations (total = 22 vertical profiles). Samples were analyzed fluorimetrically on board (7 depths per station). Note that GAK-1 was sampled twice, at the beginning and end of the cruise

Community characterization: Photosynthetic organisms and other protists were sampled at every shelf station, generally at 10 m depth only, as well as at all stations in PWS. Samples were fixed in acid Lugol's for standard microzooplankton biomass and composition estimates, and in borate-buffered formalin for characterization of diatoms. At intensive stations a 4-depth vertical profile of acid Lugol's microzooplankton samples was also collected.

Preliminary observations: There was a complex eddy field present in early May 2020 that seemed to have influenced the Seward Line, resulting in a mosaic of small and large-cell dominated communities as well as near-surface high chlorophyll patches (e.g. GAK-8, with almost 6 µg L-1) and large masses of deeper Chl-a that likely represent earlier blooms that had sunk to depth (e.g. GAK-2). Curiously, most of the Chl-a on the shelf was in the small size fraction even where total concentrations were high, typically a signature of warm springs. Only the outer Seward Line (stations 9-15) showed a high proportion of large cells. Preliminary data from the SUNA indicate that the shelf was not yet nitrate-depleted, suggesting that other nutrient anomalies might have been present in spring 2020. PWS appeared to be post-bloom with uniformly low integrated Chl-a mainly in small cells.



Total Integrated Chl-a (mg/m^2)

Figure 9. Size-fractioned chlorophyll collected along transects during

PWS3

Station ID

KIP2

Int Chl —Frac >20

1.0

0.8

0.6

0.4

0.2

0.0

MS2

Fraction Chl-a >20 µm

Table 2. Sampling effort for Strom component, by station. Intensive stations are highlighted.

|         | Chl | Chl | Lugols uzoo |     |        |  |  |  |  |  |  |
|---------|-----|-----|-------------|-----|--------|--|--|--|--|--|--|
| Station | SF  | Tot | Prof        | 10m | Diatom |  |  |  |  |  |  |
| RES2.5  | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK1    | Х   |     | Х           | Х   | Х      |  |  |  |  |  |  |
| GAK2    | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK3    | Х   |     |             | Х   | х      |  |  |  |  |  |  |
| GAK4    | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK5    | Х   |     | Х           | Х   | Х      |  |  |  |  |  |  |
| GAK6    | Х   |     |             | Х   | х      |  |  |  |  |  |  |
| GAK7    | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK8    | Х   |     |             | Х   | х      |  |  |  |  |  |  |
| GAK9    | Х   |     | Х           | Х   | Х      |  |  |  |  |  |  |
| GAK10   | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK11   | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK12   | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK13   | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK14   | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK15   | Х   |     | Х           | Х   | Х      |  |  |  |  |  |  |
| PWS1    | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| PWS2    | Х   |     | Х           | Х   | Х      |  |  |  |  |  |  |
| PWS3    | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| KIP2    | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| MS2     | Х   |     |             | Х   | Х      |  |  |  |  |  |  |
| GAK1    | Х   |     | Х           | Х   | Х      |  |  |  |  |  |  |
| TOTAL   |     |     |             |     |        |  |  |  |  |  |  |

#### Table Key:

**SF ChI:** size-fractionated chlorophyll-a; water sample filtered in series through a 20 µm pre-size filter followed by a glass fiber filter (effective pore size 0.7 µm)

**Tot Chl:** total chlorophyll-a; water sample filtered through glass fiber filter only

Lugol's 10m: water sample preserved in acid Lugol's iodine solution (final concentration 5%) for microscopy analysis of size and composition of ciliate and dinoflagellate microzooplankton (cells ≥15 µm). Sample collected from 10 m.

**Lugol's profile:** Same as above but samples collected from 4 depths to yield a vertical profile.

**Diatom:** water sample preserved in boratebuffered formalin (final concentration 2%) for microscopy analysis of diatom community.

# Meso/Macro Zooplankton

PI: Hopcroft,

Zooplankton sampling operations were divided into distinct day and night activities. During daytime, Quadnets (Quad frame has 4 nets, 2 of 150 µm mesh and 2 of 53 µm mesh) casts were conducted at all stations (except "i" stations) to 100 m depth, or within 5 m of the bottom at shallower stations. At intensive stations, and additional Quadnet cast was taken, with the 150 µm net preserved in ethanol for molecular studies and the 53µm nets used for live sorting. Daywork was executed by Danielson with assistance from Marine tech Ethan Roth.

During night-time, Hopcroft deployed a multinet equipped with 505 µm-mesh nets obliquely to 200 m depth (or 5 m above the bottom) dividing strata at 100, 60, 40, and 20 m. The drouge net was supplied to NOAA for analysis of ichthyoplankton in lieu of the Bongo nets that would have been conducted during typical cruise operations. Night operations were assisted by Marine tech Steve Hartz.

Each morning, the additional 53  $\mu$ m sample at intensive stations was live-sorted for Neocalanus. Images were taken on up to 60 animals for each species and stage to establish size and lipid content.

Observations: The shelf stations appeared to have higher than normal abundances of the copepod *Calanus marshallae*. Many stations, particularly the outer shelf, had high abundances of the larvacean *Oikopleura vanhoeffeni*. The cross-shelf patterns of lipid storage appeared atypical with the most lipid-rich community occurring at GAK15, likely related to the mesoscale eddies stalled along the shelf break.

Table 4. Sampling effort for Zooplankton. Intensive stations highlighted. \*samples taken for bulk genetics, sorting or imaging.

| Station | Calvet- | Multi | Multi | Bongo | Methot |
|---------|---------|-------|-------|-------|--------|
|         | Quad    | Vert. | Tow   |       |        |
| RES2.5  | Х       |       |       |       |        |
| GAK1    | Χ*      |       | Х     |       |        |
| GAK2    | Х       |       | Х     |       |        |
| GAK3    | х       |       | Х     |       |        |
| GAK4    | Х       |       | Х     |       |        |
| GAK5    | Χ*      |       | Х     |       |        |
| GAK6    | Х       |       | Х     |       |        |
| GAK7    | Х       |       | Х     |       |        |
| GAK8    | х       |       | Х     |       |        |
| GAK9    | Χ*      |       | Х     |       |        |
| GAK10   | Х       |       | Х     |       |        |
| GAK11   | Х       |       | Х     |       |        |
| GAK12   | Х       |       | Х     |       |        |
| GAK13   | х       |       | Х     |       |        |
| GAK14   | Х       |       | Х     |       |        |
| GAK15   | Χ*      |       | Х     |       |        |
| MS2     | Х       |       |       |       |        |
| KIP2    | Х       |       | Х     |       |        |
| PWS1    | Х       |       | Х     |       |        |
| PWS2    | Χ*      |       | Х     |       |        |
| PWS3    | Х       |       | Х     |       |        |
| TOTAL   | 21      | 0     | 19    | 0     | 0      |

PI: Petra Lenz & Russ Hopcroft.

Project Goals: *Neocalanus* emergence from diapause (NSF project - UHM & UAF; PIs: Lenz, Hopcroft, Christie and Hartline) – transcriptional profiling of individuals in the genus *Neocalanus* in the adult stage. 2019 marks the 5th year of fall collection of Neocalanus flemingeri from our PWS2 station.

#### Research Activities:

- N. flemingeri CV were sorted and preserved for RNA sequencing at all intensive stations.
- Imaging of all Neocalanus species for lipid accumulation was completed at all intensive stations

# Marine bird and marine mammal surveys (USFWS)

PI: Dr. Kathy Kuletz, U.S. Fish and Wildlife Service

Participant: none

# Outreach

The teacher-at-sea program was cancelled for the 2020 season. Nonetheless the cruise attracted significant media attention as the only cruise to operate during the shut-down of the Academic Fleet.

**Appendix. STANDARD STATIONS** (intensive stations highlighted)

| 1.     | atitude N                             | Lone     | gitude W                 |               |          |
|--------|---------------------------------------|----------|--------------------------|---------------|----------|
|        | atitude N<br>ees, minutes)            |          | gitude w<br>es, minutes) | Station Name  | Depth    |
| (uegre | , mmu.c.s <i>j</i>                    |          | ection Bay Station       | Glation Name  | Deptil   |
| 60     | 1.5                                   | 149      | 21.5                     | RES2.5        | 298      |
| 00     | 1.0                                   |          | Seward Line              | INLOZ.0       | 230      |
| 59     | 50.7                                  | 149      | 28                       | GAK1          | 269      |
| 59     | 46                                    | 149      | 23.8                     | GAK1I         | 200      |
| 59     | 41.5                                  | 149      | 19.6                     | GAK2          | 228      |
| 59     | 37.6                                  | 149      | 15.5                     | GAK2I         | 220      |
| 59     | 33.2                                  | 149      | 11.3                     | GAK21<br>GAK3 | 213      |
| 59     | 28.9                                  | 149      | 7.1                      | GAK3I         | 213      |
| 59     | 24.5                                  | 149      | 2.9                      | GAK4          | 201      |
| 59     | 20.1                                  | 148      | 58.7                     | GAK4I         | 201      |
| 59     | 15.7                                  |          |                          | GAK41<br>GAK5 | 167      |
|        |                                       | 148      | 54.5                     |               | 167      |
| 59     | 11.4<br>7                             | 148      | 50.3                     | GAK5I         | 454      |
| 59     | · · · · · · · · · · · · · · · · · · · | 148      | 46.2                     | GAK6          | 151      |
| 59     | 2.7                                   | 148      | 42                       | GAK6I         | 0.10     |
| 58     | 58.3                                  | 148      | 37.8                     | GAK7          | 243      |
| 58     | 52.9                                  | 148      | 33.6                     | GAK7I         | 600      |
| 58     | 48.5                                  | 148      | 29.4                     | GAK8          | 288      |
| 58     | 44.6                                  | 148      | 25.2                     | GAK8I         |          |
| 58     | 40.8                                  | 148      | 21                       | GAK9          | 276      |
| 58     | 36.7                                  | 148      | 16.7                     | GAK9I         |          |
| 58     | 32.5                                  | 148      | 12.7                     | GAK10         | 1459     |
| 58     | 23.3                                  | 148      | 4.3                      | GAK11         | 1410     |
| 58     | 14.6                                  | 147      | 56                       | GAK12         | 2134     |
| 58     | 5.9                                   | 147      |                          |               | 2058     |
| 57     | 56.6                                  | 147      | 39                       | GAK14         | 3518     |
| 57     | 47.5                                  | 147      | 30                       | GAK15         | 4543     |
|        |                                       | Prince W | illiam Sound Station     | s             |          |
| 60     | 7.5                                   | 147      | 50                       | KIP0          |          |
| 60     | 16.7                                  | 147      | 59.2                     | KIP2          | 588      |
| 60     | 22.78                                 | 147      | 56.17                    | PWS1          | 248      |
| 60     | 32.1                                  | 147      | 48.2                     | PWS2          | 798      |
| 60     | 40                                    | 147      | 40                       | PWS3          | 742      |
| 60     | 4925                                  | 147      | 24                       | PWSA          | 472      |
| 60     | 45                                    | 147      | 14                       | PWSB          | 712      |
| 60     | 38.1                                  | 147      | 10                       | PWSC          | 245      |
| 60     | 31.5                                  | 147      | 7.6                      | PWSD          | <u> </u> |
| 60     | 24.3                                  | 147      | 58.3                     | PWSE          | 291      |
| 60     | 24                                    | 146      | 45                       | PWSF          |          |
|        | - 1                                   |          | nbia Glacier             | ,             |          |
| 61     | 7.4                                   | 147      | 3.8                      | CG0           |          |
| 60     | 59.5                                  | 147      | 4.2                      | CG1           | 192      |
| 60     | 57.6                                  | 147      | 5.9                      | CG2           | 192      |
| UU     | 01.0                                  |          | •                        | UG2           |          |
| 60     | 16.0                                  |          | lcy Bay                  | IDO           |          |
| 60     | 16.3                                  | 148      | 21.7                     | IB0           |          |
| 60     | 15.5                                  | 148      | 20.1                     | IB1           | 172      |
| 60     | 16.3                                  | 148      | 14                       | IB2           | 157      |
|        |                                       |          |                          |               |          |
| 50     | F7.0F7                                |          | tague Strait Line        | MO4           |          |
| 59     | 57.257                                | 147      | 55.602                   | MS1           | ,        |
| 59     | 56.6                                  | 147      | 53.7                     | MS2           | 194      |
| 59     | 55.9                                  | 147      | 51.4                     | MS3           | 169      |
| 59     | 55.2                                  | 147      | 49.7                     | MS4           | 119      |

|        | atitude N<br>ees, minutes) |        | itude W<br>s, minutes) | Station Name                            | Depth |
|--------|----------------------------|--------|------------------------|-----------------------------------------|-------|
| (0.09. |                            |        | Kodiak Line            | 0.00.000.000000000000000000000000000000 |       |
| 58     | 14.7                       | 151    | 35.4                   | KOD1                                    | 71    |
| 58     | 7.8                        | 151    | 23.07                  | KOD2                                    | 127   |
| 58     | 0.9                        | 151    | 10.74                  | KOD3                                    | 84    |
| 57     | 54                         | 150    | 58.17                  | KOD4                                    | 78    |
| 57     | 47.1                       | 150    | 45.6                   | KOD5                                    | 87    |
| 57     | 40.26                      | 150    | 32.97                  | KOD6                                    | 102   |
| 57     | 33.42                      | 150    | 20.34                  | KOD7                                    | 178   |
| 57     | 26.37                      | 150    | 7.95                   | KOD8                                    | 708   |
| 57     | 19.32                      | 149    | 55.56                  | KOD9                                    | 1310  |
| 57     | 12.27                      | 149    | 43.17                  | KOD10                                   | 2503  |
|        |                            | Cape   | Suckling Line          |                                         |       |
| 59     | 56.35                      | 143    | 53.5                   | CS1                                     | 63    |
| 59     | 53.85                      | 143    | 53.5                   | CS1.25                                  | 85    |
| 59     | 51.35                      | 143    | 53.5                   | CS1i                                    | 104   |
| 59     | 48.85                      | 143    | 53.5                   | CS1.75                                  | 116   |
| 59     | 46.35                      | 143    | 53.5                   | CS2                                     | 124   |
| 59     | 41.35                      | 143    | 53.5                   | CS2i                                    | 134   |
| 59     | 36.35                      | 143    | 53.5                   | CS3                                     | 193   |
| 59     | 31.35                      | 143    | 53.5                   | CS3i                                    | 1316  |
| 59     | 26.35                      | 143    | 53.5                   | CS4                                     | 2010  |
| 59     | 16.35                      | 143    | 53.5                   | CS5                                     | 2810  |
|        |                            | Middle | eton Island Line       |                                         |       |
| 60     | 15                         | 145    | 30                     | MID1                                    | 35    |
| 60     | 10.5                       | 145    | 34.5                   | MID1i                                   | 100   |
| 60     | 6                          | 145    | 39                     | MID2                                    | 116   |
| 60     | 1.5                        | 145    | 43.5                   | MID2i                                   | 98    |
| 59     | 57                         | 145    | 48                     | MID3                                    | 87    |
| 59     | 52.5                       | 145    | 52.5                   | MID3i                                   | 100   |
| 59     | 48                         | 145    | 57                     | MID4                                    | 90    |
| 59     | 43.5                       | 146    | 1.5                    | MID4i                                   | 72    |
| 59     | 39                         | 146    | 6                      | MID5                                    | 97    |
| 59     | 34.5                       | 146    | 10.5                   | MID5i                                   | 114   |
| 59     | 30                         | 146    | 15                     | MID6                                    | 41    |
| 59     | 25.7                       | 146    | 10                     | MID6i                                   | 65    |
| 59     | 23                         | 146    | 18                     | MID7                                    | 65    |
| 59     | 18.267                     | 146    | 15                     | MID7i                                   | 420   |
| 59     | 13.534                     | 146    | 12                     | MID8                                    | 611   |
| 59     | 4.067                      | 146    | 6                      | MID9                                    | 2900  |
| 58     | 54.6                       | 146    | 0                      | MID10                                   | 4444  |

| Event.ID | Date & Time (UTC) | Instrument | Action      | Transect    | Station | Cast | Latitude | Longitude | Seafloor | Author     | Comment                                  |
|----------|-------------------|------------|-------------|-------------|---------|------|----------|-----------|----------|------------|------------------------------------------|
| 1        | 5/4/2020 3:29:54  | Ship       | other       | NaN         | NaN     | NaN  | 60.0984  | -149.4425 |          | eRoth      | departure delayed due to bow thruster    |
| 2        | 5/4/2020 14:26:49 | Ship       | startCruise | NaN         | NaN     | NaN  | 60.0771  | -149.4128 |          | eRoth      | departing Seward, AK                     |
| 3        | 5/4/2020 15:09:41 | CTD911     | deploy      | NaN         | RES2.5  | 1    | 60.0250  | -149.3581 | 292      | sDanielson | The Great 2020 Coronavirus Cruise        |
| 4        | 5/4/2020 15:47:20 | CTD911     | recover     | NaN         | RES2.5  | 1    | 60.0250  | -149.3581 | 292      | sDanielson |                                          |
| 5        | 5/4/2020 15:53:13 | CalVet net | deploy      | NaN         | RES2.5  | 1    | 60.0250  | -149.3581 | 292      | rHopcroft  |                                          |
| 6        | 5/4/2020 15:58:11 | CalVet net | recover     | NaN         | RES2.5  | 1    | 60.0250  | -149.3581 | 292      | rHopcroft  |                                          |
| 7        | 5/4/2020 18:13:08 | CTD911     | deploy      | Seward Line | GAK1    | 2    | 59.8452  | -149.4703 | 270      | sDanielson |                                          |
| 8        | 5/4/2020 18:53:42 | CTD911     | recover     | Seward Line | GAK1    | 2    | 59.8489  | -149.4707 | 270      | sDanielson |                                          |
| 238      | 5/11/2020 6:31:05 | CalVet net | deploy      | Seward Line | GAK1    | 2a   | 59.8506  | -149.4710 | 271      | rHopcroft  |                                          |
| 10       | 5/4/2020 19:12:52 | CalVet net | recover     | Seward Line | GAK1    | 2a   | 59.8516  | -149.4711 | 271      | rHopcroft  | live/ethanol - missed line mark - probab |
| 11       | 5/4/2020 19:28:44 | CalVet net | deploy      | Seward Line | GAK1    | 2    | 59.8539  | -149.4714 | 271      | rHopcroft  |                                          |
| 12       | 5/4/2020 19:48:05 | CalVet net | deploy      | Seward Line | GAK1    | 2    | 59.8539  | -149.4714 | 271      | rHopcroft  |                                          |
| 13       | 5/4/2020 20:31:35 | ADCP WH300 | service     | NaN         | NaN     | NaN  | 59.7692  | -149.4006 |          | eRoth      | applied new cal offset of 44.13 deg      |
| 14       | 5/4/2020 20:50:08 | CTD911     | deploy      | Seward Line | GAK1I   | 3    | 59.7680  | -149.3980 | 260      | sDanielson |                                          |
| 15       | 5/4/2020 21:07:13 | CTD911     | recover     | Seward Line | GAK1I   | 3    | 59.7682  | -149.4000 | 260      | sDanielson |                                          |
| 16       | 5/5/2020 6:09:59  | multinet   | deploy      | Seward Line | GAK8    | 1    | 58.8087  | -148.4851 | 290      | rHopcroft  |                                          |
| 17       | 5/5/2020 6:19:10  | multinet   | maxDepth    | Seward Line | GAK8    | 1    | 58.8086  | -148.4791 | 290      | rHopcroft  |                                          |
| 18       | 5/5/2020 6:55:17  | multinet   | recover     | Seward Line | GAK8    | 1    | 58.8095  | -148.4551 | 290      | rHopcroft  | MAX OUT 251M                             |
| 19       | 5/5/2020 8:15:27  | multinet   | deploy      | Seward Line | GAK9    | 2    | 58.6804  | -148.3501 | 280      | rHopcroft  |                                          |
| 20       | 5/5/2020 8:25:16  | multinet   | maxDepth    | Seward Line | GAK9    | 2    | 58.6813  | -148.3415 | 280      | rHopcroft  |                                          |
| 21       | 5/5/2020 8:58:06  | multinet   | recover     | Seward Line | GAK9    | 2    | 58.6843  | -148.3107 | 280      | rHopcroft  | MAX OUT 272M                             |
| 22       | 5/5/2020 10:13:05 | multinet   | deploy      | Seward Line | GAK10   | 2    | 58.5420  | -148.2099 | 1444     | rHopcroft  |                                          |
| 23       | 5/5/2020 10:24:13 | multinet   | maxDepth    | Seward Line | GAK10   | 2    | 58.5450  | -148.1941 | 1444     | rHopcroft  |                                          |
| 24       | 5/5/2020 10:53:45 | multinet   | recover     | Seward Line | GAK10   | 3    | 58.5545  | -148.1538 | 1444     | rHopcroft  | MAX OUT 320M                             |
| 25       | 5/5/2020 12:12:16 | multinet   | deploy      | Seward Line | GAK11   | 4    | 58.3881  | -148.0742 | 1408     | rHopcroft  |                                          |
| 26       | 5/5/2020 12:21:54 | multinet   | maxDepth    | Seward Line | GAK11   | 4    | 58.3896  | -148.0642 | 1408     | rHopcroft  |                                          |
| 27       | 5/5/2020 12:26:49 | multinet   | abort       | Seward Line | GAK11   | 4    | 58.3903  | -148.0584 | 1408     | rHopcroft  | missed net trip at bottom                |
| 28       | 5/5/2020 12:58:37 | multinet   | deploy      | Seward Line | GAK11   | 4    | 58.3881  | -148.0761 | 1408     | rHopcroft  | REDO                                     |
| 29       | 5/5/2020 13:08:19 | multinet   | maxDepth    | Seward Line | GAK11   | 4    | 58.3888  | -148.0650 | 1408     | rHopcroft  |                                          |
| 30       | 5/5/2020 14:16:50 | multinet   | recover     | Seward Line | GAK11   | 4    | 58.3918  | -148.0335 | 1408     | rHopcroft  | WIRE OUT 271M                            |
| 31       | 5/5/2020 17:04:27 | CTD911     | deploy      | Seward Line | GAK8    | 4    | 58.8086  | -148.4922 | 289      | sDanielson |                                          |
| 32       | 5/5/2020 17:41:55 | CTD911     | recover     | Seward Line | GAK8    | 4    | 58.8058  | -148.5095 | 289      | sDanielson |                                          |
| 34       | 5/5/2020 18:05:33 | CalVet net | deploy      | Seward Line | GAK8    | 3    | 58.8081  | -148.4955 | 285      | sDanielson |                                          |
| 35       | 5/5/2020 18:10:49 | CalVet net | recover     | Seward Line | GAK8    | 3    | 58.8082  | -148.4983 | 285      | sDanielson |                                          |
| 36       | 5/5/2020 19:27:34 | CalVet net | deploy      | Seward Line | gak9    | 4a   | 58.6806  | -148.3557 | 285      | rHopcroft  | live/ethanol                             |
| 37       | 5/5/2020 19:36:28 | CalVet net | recover     | Seward Line | gak9    | 4a   | 58.6806  | -148.3557 | 285      | rHopcroft  |                                          |
| 38       | 5/5/2020 20:16:19 | CTD911     | deploy      | Seward Line | GAK9    | 5    | 58.6814  | -148.3510 | 279      | sDanielson |                                          |

| Event.ID | Date              | Instrument | Action   | Transect    | Station | Cast | Latitude | Longitude | Seafloor | Author     | Comment         |
|----------|-------------------|------------|----------|-------------|---------|------|----------|-----------|----------|------------|-----------------|
| 39       | 5/5/2020 20:44:35 | CTD911     | recover  | Seward Line | GAK9    | 5    | 58.6821  | -148.3547 | 279      | sDanielson |                 |
| 40       | 5/5/2020 20:52:06 | CalVet net | deploy   | Seward Line | gak9    | 4    | 58.6824  | -148.3558 | 279      | rHopcroft  |                 |
| 41       | 5/5/2020 20:52:09 | CalVet net | deploy   | Seward Line | gak9    | 4    | 58.6824  | -148.3558 | 279      | rHopcroft  |                 |
| 43       | 5/5/2020 21:47:11 | CTD911     | deploy   | Seward Line | GAK9I   | 6    | 58.6095  | -148.2753 | 705      | sDanielson |                 |
| 44       | 5/5/2020 22:21:36 | CTD911     | recover  | Seward Line | GAK9I   | 6    | 58.6100  | -148.2761 | 705      | sDanielson |                 |
| 45       | 5/5/2020 23:06:21 | CTD911     | deploy   | Seward Line | GAK10   | 7    | 58.5404  | -148.2149 | 1445     | sDanielson |                 |
| 46       | 5/5/2020 23:16:30 | CTD911     | recover  | Seward Line | GAK10   | 7    | 58.5415  | -148.2121 | 1445     | sDanielson | CTD FOR PAR     |
| 47       | 5/5/2020 23:21:09 | CalVet net | deploy   | Seward Line | GAK10   | 5    | 58.5423  | -148.2104 | 1445     | rHopcroft  |                 |
| 48       | 5/5/2020 23:27:56 | CalVet net | recover  | Seward Line | GAK10   | 5    | 58.5435  | -148.2070 | 1445     | rHopcroft  |                 |
| 51       | 5/5/2020 23:50:47 | CTD911     | deploy   | Seward Line | GAK10   | 8    | 58.5384  | -148.2249 | 1405     | eRoth      |                 |
| 52       | 5/6/2020 1:16:56  | CTD911     | recover  | Seward Line | GAK10   | 8    | 58.5387  | -148.2137 | 1459     | sDanielson |                 |
| 54       | 5/6/2020 2:42:11  | CTD911     | deploy   | Seward Line | GAK11   | 9    | 58.3897  | -148.0711 | 1410     | sDanielson |                 |
| 55       | 5/6/2020 2:49:39  | CTD911     | deploy   | Seward Line | GAK11   | 9    | 58.3907  | -148.0716 | 1410     | sDanielson | FOR PAR PROFILE |
| 56       | 5/6/2020 2:53:59  | CalVet net | deploy   | Seward Line | GAK11   | 6    | 58.3912  | -148.0719 | 1409     | rHopcroft  |                 |
| 57       | 5/6/2020 2:58:16  | CalVet net | recover  | Seward Line | GAK11   | 6    | 58.3918  | -148.0721 | 1409     | rHopcroft  |                 |
| 58       | 5/6/2020 3:25:02  | CTD911     | deploy   | Seward Line | GAK11   | 10   | 58.3916  | -148.0722 | 1409     | sDanielson |                 |
| 59       | 5/6/2020 3:38:14  | EM302      | stop     | NaN         | NaN     | NaN  | 58.3929  | -148.0727 |          | eRoth      |                 |
| 60       | 5/6/2020 4:37:23  | CTD911     | deploy   | Seward Line | GAK11   | 10   | 58.3916  | -148.0722 | 1409     | sDanielson |                 |
| 61       | 5/6/2020 6:13:07  | multinet   | deploy   | Seward Line | GAK12   | 5    | 58.2437  | -147.9366 | 2113     | rHopcroft  |                 |
| 62       | 5/6/2020 6:23:41  | multinet   | maxDepth | Seward Line | GAK12   | 5    | 58.2453  | -147.9272 | 2113     | rHopcroft  |                 |
| 63       | 5/6/2020 6:54:46  | multinet   | recover  | Seward Line | GAK12   | 5    | 58.2483  | -147.9001 | 2113     | rHopcroft  | WIRE OUT 320M   |
| 64       | 5/6/2020 8:23:12  | multinet   | deploy   | Seward Line | GAK13   | 6    | 58.0986  | -147.7951 | 2060     | rHopcroft  |                 |
| 65       | 5/6/2020 8:36:43  | multinet   | maxDepth | Seward Line | GAK13   | 6    | 58.0980  | -147.7880 | 2060     | rHopcroft  |                 |
| 66       | 5/6/2020 9:04:51  | multinet   | recover  | Seward Line | GAK13   | 6    | 58.0961  | -147.7700 | 2060     | rHopcroft  | WIRE OUT 288M   |
| 67       | 5/6/2020 10:31:39 | multinet   | deploy   | Seward Line | GAK14   | 7    | 57.9434  | -147.6509 | 3039     | rHopcroft  |                 |
| 68       | 5/6/2020 10:42:17 | multinet   | maxDepth | Seward Line | GAK14   | 7    | 57.9439  | -147.6424 | 3039     | rHopcroft  |                 |
| 69       | 5/6/2020 11:12:38 | multinet   | recover  | Seward Line | GAK14   | 7    | 57.9449  | -147.6189 | 3039     | rHopcroft  | WIRE OUT 295M   |
| 70       | 5/6/2020 12:34:12 | multinet   | deploy   | Seward Line | GAK15   | 8    | 57.7912  | -147.5164 | 4100     | rHopcroft  |                 |
| 71       | 5/6/2020 12:45:28 | multinet   | maxDepth | Seward Line | GAK15   | 8    | 57.7913  | -147.5046 | 4400     | rHopcroft  |                 |
| 72       | 5/6/2020 13:15:32 | multinet   | recover  | Seward Line | GAK15   | 8    | 57.7923  | -147.4742 | 4400     | rHopcroft  | WIRE OUT 314M   |
| 73       | 5/6/2020 14:23:25 | CTD911     | deploy   | Seward Line | GAK15   | 11   | 57.7919  | -147.4973 | 4588     | sDanielson | FOR PAR PROFILE |
| 74       | 5/6/2020 14:31:43 | CTD911     | recover  | Seward Line | GAK15   | 11   | 57.7920  | -147.4985 | 4588     | sDanielson |                 |
| 76       | 5/6/2020 14:39:58 | CalVet net | deploy   | Seward Line | GAK15   | 7    | 57.7919  | -147.4994 | 4500     | sDanielson |                 |
| 77       | 5/6/2020 14:44:24 | CalVet net | recover  | Seward Line | GAK15   | 7    | 57.7918  | -147.5002 | 4500     | sDanielson |                 |
| 78       | 5/6/2020 15:06:49 | CTD911     | deploy   | Seward Line | GAK15   | 12   | 57.7914  | -147.5003 | 4530     | sDanielson |                 |
| 79       | 5/6/2020 16:44:53 | CalVet net | deploy   | Seward Line | GAK15   | 7a   | 57.7895  | -147.5059 | 4500     | sDanielson |                 |
| 239      | 5/11/2020 6:32:45 | CalVet net | recover  | Seward Line | GAK15   | 7a   | 57.7891  | -147.5071 | 4500     | sDanielson |                 |

| Event.ID | Date              | Instrument | Action  | Transect    | Station | Cast | Latitude | Longitude | Seafloor | Author     | Comment                                 |
|----------|-------------------|------------|---------|-------------|---------|------|----------|-----------|----------|------------|-----------------------------------------|
| 80       | 5/6/2020 18:26:52 | CTD911     | deploy  | Seward Line | GAK14   | 13   | 57.9445  | -147.6565 | 3025     | sDanielson |                                         |
| 81       | 5/6/2020 18:37:06 | CTD911     | recover | Seward Line | GAK14   | 13   | 57.9451  | -147.6622 | 3025     | sDanielson | FOR PAR PROFILE                         |
| 82       | 5/6/2020 18:56:38 | CalVet net | deploy  | Seward Line | GAK14   | 8    | 57.9443  | -147.6552 | 3025     | sDanielson | ,                                       |
| 83       | 5/6/2020 19:02:40 | CalVet net | recover | Seward Line | GAK14   | 8    | 57.9447  | -147.6591 | 3025     | sDanielson | 1                                       |
| 84       | 5/6/2020 19:25:12 | CTD911     | deploy  | Seward Line | GAK14   | 14   | 57.9438  | -147.6556 | 3045     | sDanielson |                                         |
| 85       | 5/6/2020 20:57:28 | CTD911     | recover | Seward Line | GAK14   | 14   | 57.9435  | -147.6731 | 3045     | sDanielson | , , , , , , , , , , , , , , , , , , ,   |
| 86       | 5/6/2020 22:04:40 | CTD911     | deploy  | Seward Line | GAK13   | 15   | 58.0987  | -147.7902 | 2068     | sDanielson | FOR PAR PROFILE                         |
| 86.5     | 5/6/2020 22:15:40 | CTD911     | recover | Seward Line | GAK13   | 15   |          |           | 2068     | sDanielson |                                         |
| 87       | 5/6/2020 22:18:00 | CalVet net | deploy  | Seward Line | GAK13   | 9    | 58.0991  | -147.7945 | 2068     | sDanielson | , , , , , , , , , , , , , , , , , , ,   |
| 88       | 5/6/2020 22:21:44 | CalVet net | recover | Seward Line | GAK13   | 9    | 58.0992  | -147.7960 | 2068     | sDanielson | , , , , , , , , , , , , , , , , , , ,   |
| 89       | 5/6/2020 22:29:08 | CTD911     | deploy  | Seward Line | GAK13   | 16   | 58.0993  | -147.7971 | 2058     | sDanielson | ,                                       |
| 90       | 5/7/2020 0:01:52  | CTD911     | recover | Seward Line | GAK13   | 16   | 58.0984  | -147.8107 | 2058     | sDanielson |                                         |
| 90.5     | 5/7/2020 1:03:27  | CTD911     | deploy  | Seward Line | GAK12   | 17   | 58.2425  | -147.9298 | 2137     | sDanielson |                                         |
| 91       | 5/7/2020 1:11:36  | CTD911     | recover | Seward Line | GAK12   | 17   | 58.2435  | -147.9330 | 2137     | sDanielson |                                         |
| 92       | 5/7/2020 1:16:44  | CalVet net | deploy  | Seward Line | GAK12   | 10   | 58.2440  | -147.9343 | 2165     | sDanielson | ,                                       |
| 95       | 5/7/2020 1:19:49  | CalVet net | recover | Seward Line | GAK12   | 10   | 58.2444  | -147.9352 | 2165     | sDanielson | , , , , , , , , , , , , , , , , , , ,   |
| 96       | 5/7/2020 1:27:16  | CTD911     | deploy  | Seward Line | GAK12   | 18   | 58.2450  | -147.9366 | 2139     | sDanielson |                                         |
| 97       | 5/7/2020 2:50:25  | CTD911     | recover | Seward Line | GAK12   | 18   | 58.2462  |           | 2139     | sDanielson |                                         |
| 98       | 5/7/2020 3:19:12  |            | start   | NaN         | NaN     | NaN  | 58.2908  | -147.9463 |          | eRoth      |                                         |
| 99       | 5/7/2020 16:53:24 | CTD911     | deploy  | PWS         | KIP2    | 19   | 60.2783  | -147.9872 | 586      | sDanielson | !                                       |
| 100      | 5/7/2020 17:47:40 |            | recover | PWS         | KIP2    | 19   | 60.2769  | -147.9858 | 586      | sDanielson | !                                       |
| 101      | 5/7/2020 17:52:59 | CalVet net | deploy  | Seward Line | KIP2    | 11   | 60.2769  | -147.9858 | 584      | sDanielson | !                                       |
| 102      | 5/7/2020 17:57:23 | CalVet net | recover | Seward Line | KIP2    | 11   | 60.2769  | -147.9858 | 584      | sDanielson | !                                       |
| 103      | 5/7/2020 19:17:11 | CTD911     | deploy  | PWS         | PWS1    | 20   | 60.3802  | -147.9366 | 347      | sDanielson |                                         |
| 104      | 5/7/2020 19:45:38 | CTD911     | recover | PWS         | PWS1    | 20   | 60.3802  | -147.9366 | 347      | sDanielson | !                                       |
| 105      | 5/7/2020 19:49:11 | CalVet net | deploy  | PWS         | PWS1    | 12   | 60.3802  | -147.9366 | 347      | sDanielson | !                                       |
| 106      | 5/7/2020 19:52:36 | CalVet net | recover | PWS         | PWS1    | 12   | 60.3802  | -147.9366 | 347      | sDanielson | !                                       |
| 107      | 5/7/2020 21:22:58 | CTD911     | deploy  | PWS         | PWS2    | 21   | 60.5348  | -147.8024 | 730      | sDanielson | !                                       |
| 108      | 5/7/2020 22:14:37 | Science    | other   | NaN         | NaN     | NaN  | 60.5348  | -147.8024 |          | eRoth      | ISUS secured due to insufficient lamp l |
| 109      | 5/7/2020 22:18:29 | CTD911     | recover | PWS         | PWS2    | 21   | 60.5348  | -147.8024 | 730      | sDanielson | !                                       |
| 110      | 5/7/2020 22:23:52 | CalVet net | deploy  | PWS         | PWS2    | 13a  | 60.5348  | -147.8024 | 730      | sDanielson | live/Ethanol                            |
| 113      | 5/7/2020 22:36:41 | CalVet net | recover | PWS         | PWS2    | 13a  | 60.5351  | -147.8020 | 730      | sDanielson | !                                       |
| 116      | 5/7/2020 22:37:10 | CalVet net | deploy  | PWS         | PWS2    | 13   | 60.5351  | -147.8019 | 730      | sDanielson | · ·                                     |
| 117      | 5/7/2020 22:40:11 | CalVet net | recover | PWS         | PWS2    | 13   | 60.5352  | -147.8018 | 730      | sDanielson |                                         |
| 120      | 5/8/2020 0:47:05  | CTD911     | deploy  | PWS         | PWS3    | 22   | 60.6676  | -147.6681 | 740      | eRoth      |                                         |
| 122      | 5/8/2020 1:41:39  | CTD911     | recover | PWS         | PWS3    | 22   | 60.6674  | -147.6672 | 731      | sDanielson |                                         |
| 123      | 5/8/2020 1:46:31  | CalVet net | deploy  | PWS         | PWS3    | 14   | 60.6674  | -147.6672 | 730      | sDanielson |                                         |

| Event.ID |                   | Instrument | Action   | Transect    | Station | Cast | Latitude | Longitude | Seafloor | Author     | Comment                      |
|----------|-------------------|------------|----------|-------------|---------|------|----------|-----------|----------|------------|------------------------------|
| 124      | 5/8/2020 1:49:34  | CalVet net | recover  | PWS         | PWS3    | 14   | 60.6674  | -147.6670 | 730      | sDanielson |                              |
| 126      | 5/8/2020 6:05:50  | multinet   | deploy   | PWS         | PWS3    | 9    | 60.6673  | -147.6652 | 710      | rHopcroft  | !                            |
| 127      | 5/8/2020 6:13:19  | multinet   | maxDepth | PWS         | PWS3    | 9    | 60.6701  | -147.6579 | 710      | rHopcroft  | !                            |
| 128      | 5/8/2020 6:40:35  | multinet   | recover  | PWS         | PWS3    | 9    | 60.6792  | -147.6326 | 710      | rHopcroft  | WIRE OUT 286M                |
| 129      | 5/8/2020 8:16:37  | multinet   | deploy   | PWS         | PWS2    | 10   | 60.5322  | -147.8201 | 710      | rHopcroft  |                              |
| 130      | 5/8/2020 8:24:40  | multinet   | maxDepth | PWS         | PWS2    | 10   | 60.5339  | -147.8126 | 727      | rHopcroft  |                              |
| 131      | 5/8/2020 8:53:20  | multinet   | recover  | PWS         | PWS2    | 10   | 60.5384  | -147.7841 | 727      | rHopcroft  | WIRE OUT 242M                |
| 132      | 5/8/2020 10:37:12 | multinet   | deploy   | PWS         | PWS1    | 11   | 60.3764  | -147.9395 | 354      | rHopcroft  | !                            |
| 133      | 5/8/2020 10:45:25 | multinet   | maxDepth | PWS         | PWS1    | 11   | 60.3801  | -147.9369 | 354      | rHopcroft  |                              |
| 134      | 5/8/2020 11:11:54 | multinet   | recover  | PWS         | PWS1    | 11   | 60.3905  | -147.9271 | 354      | rHopcroft  | WIRE OUT 240M                |
| 135      | 5/8/2020 12:27:41 | multinet   | deploy   | PWS         | KIP2    | 12   | 60.2710  | -147.9932 | 577      | rHopcroft  | !                            |
| 136      | 5/8/2020 12:36:26 | multinet   | maxDepth | PWS         | KIP2    | 12   | 60.2750  | -147.9895 | 577      | rHopcroft  |                              |
| 137      | 5/8/2020 13:04:44 | multinet   | recover  | PWS         | KIP2    | 12   | 60.2892  | -147.9779 | 577      | rHopcroft  | WIRE OUT 271M                |
| 138      | 5/8/2020 16:24:19 | CTD911     | recover  | Seward Line | KIP0    | 23   | 60.1253  | -147.8330 | 293      | sDanielson |                              |
| 139      | 5/8/2020 16:24:56 | CTD911     | deploy   | Seward Line | KIP0    | 23   | 60.1254  | -147.8330 | 293      | sDanielson |                              |
| 140      | 5/8/2020 18:13:38 | CTD911     | deploy   | MS          | MS1     | 24   | 59.9534  | -147.9263 | 167      | sDanielson |                              |
| 141      | 5/8/2020 18:27:23 | CTD911     | recover  | MS          | MS1     | 24   | 59.9534  | -147.9263 | 167      | sDanielson |                              |
| 142      | 5/8/2020 19:04:13 | CTD911     | deploy   | MS          | MS3     | 25   | 59.9345  | -147.8551 | 167      | sDanielson |                              |
| 143      | 5/8/2020 19:16:41 | CTD911     | recover  | MS          | MS3     | 25   | 59.9362  | -147.8509 | 167      | sDanielson |                              |
| 144      | 5/8/2020 19:55:43 | CTD911     | deploy   | MS          | MS4     | 26   | 59.9235  | -147.8317 | 123      | eRoth      |                              |
| 145      | 5/8/2020 20:07:31 | CTD911     | recover  | MS          | MS4     | 26   | 59.9234  | -147.8317 | 123      | sDanielson |                              |
| 146      | 5/8/2020 21:21:18 | CTD911     | recover  | MS          | MS2     | 27   | 59.9436  | -147.8871 | 196      | sDanielson |                              |
| 147      | 5/8/2020 21:22:10 | CTD911     | deploy   | MS          | MS2     | 27   | 59.9432  | -147.8922 | 196      | sDanielson |                              |
| 148      | 5/8/2020 21:30:06 | CalVet net | deploy   | MS          | MS2     | 15   | 59.9423  | -147.8942 | 196      | sDanielson |                              |
| 149      | 5/8/2020 21:33:35 | CalVet net | recover  | MS          | MS2     | 15   | 59.9428  | -147.8932 | 196      | sDanielson |                              |
| 152      | 5/9/2020 6:03:35  | multinet   | deploy   | Seward Line | GAK7    | 13   | 58.9653  | -148.6353 | 249      | rHopcroft  |                              |
| 153      | 5/9/2020 6:16:43  | multinet   | maxDepth | Seward Line | GAK7    | 13   | 58.9624  | -148.6253 | 249      | rHopcroft  |                              |
| 154      | 5/9/2020 6:50:58  | multinet   | recover  | Seward Line | GAK7    | 13   | 58.9537  | -148.6058 | 249      | rHopcroft  | WIRE OUT 371M                |
| 155      | 5/9/2020 8:47:39  | multinet   | deploy   | Seward Line | GAK6    | 14   | 59.1253  | -148.7698 | 150      | rHopcroft  |                              |
| 156      | 5/9/2020 8:56:35  | multinet   | maxDepth | Seward Line | GAK6    | 14   | 59.1213  | -148.7662 | 150      | rHopcroft  |                              |
| 157      | 5/9/2020 9:05:44  | multinet   | abort    | Seward Line | GAK6    | 14   | 59.1213  | -148.7662 | 150      | rHopcroft  | WINCH FROOZE GEAR ON BOTTOM  |
| 158      | 5/9/2020 9:33:05  | multinet   | deploy   | Seward Line | GAK6    | 14   | 59.1180  | -148.7805 | 150      | rHopcroft  | REPEAT                       |
| 159      | 5/9/2020 9:40:59  | multinet   | maxDepth | Seward Line | GAK6    | 14   | 59.1151  | -148.7784 | 150      | rHopcroft  |                              |
| 160      | 5/9/2020 10:09:39 | multinet   | recover  | Seward Line | GAK6    | 14   | 59.1042  | -148.7747 | 150      | rHopcroft  | WIRE OUT 221M, 142M DEPTH    |
| 161      | 5/9/2020 11:44:02 | multinet   | deploy   | Seward Line | GAK5    | 15   | 59.2693  | -148.9116 | 169      | rHopcroft  | •                            |
| 162      | 5/9/2020 11:53:00 | multinet   | maxDepth | Seward Line | GAK5    | 15   | 59.2643  | -148.9098 | 170      | rHopcroft  |                              |
| 163      | 5/9/2020 12:20:02 | multinet   | recover  | Seward Line | GAK5    | 15   | 59.2495  | -148.8998 | 170      | rHopcroft  | WIRE OUT 244, MAX DEPTH 162M |

| Event.ID | Date               | Instrument | Action   | Transect    | Station | Cast | Latitude | Longitude | Seafloor | Author     | Comment                     |
|----------|--------------------|------------|----------|-------------|---------|------|----------|-----------|----------|------------|-----------------------------|
| 164      | 5/9/2020 14:02:50  | CTD911     | deploy   | Seward Line | GAK4I   | 28   | 59.3348  | -148.9799 | 196      | sDanielson |                             |
| 166      | 5/9/2020 14:16:20  | CTD911     | recover  | Seward Line | GAK4I   | 28   | 59.3346  | -148.9792 | 196      | sDanielson |                             |
| 167      | 5/9/2020 15:06:28  | CalVet net | deploy   | Seward Line | GAK5    | 16   | 59.2613  | -148.9093 | 167      | sDanielson |                             |
| 168      | 5/9/2020 15:11:58  | CalVet net | recover  | Seward Line | GAK5    | 16   | 59.2613  | -148.9078 | 167      | sDanielson |                             |
| 169      | 5/9/2020 15:36:30  | CalVet net | deploy   | Seward Line | GAK5    | 16a  | 59.2623  | -148.9071 | 166      | sDanielson | live/ethanol                |
| 170      | 5/9/2020 15:42:16  | CalVet net | recover  | Seward Line | GAK5    | 16a  | 59.2623  | -148.9071 | 166      | sDanielson |                             |
| 171      | 5/9/2020 16:08:22  | CTD911     | deploy   | Seward Line | GAK5    | 29   | 59.2622  | -148.9057 | 165      | sDanielson |                             |
| 172      | 5/9/2020 16:39:50  | CTD911     | recover  | Seward Line | GAK5    | 29   | 59.2628  | -148.9074 | 165      | sDanielson |                             |
| 173      | 5/9/2020 17:42:34  | CTD911     | deploy   | Seward Line | GAK5I   | 30   | 59.1916  | -148.8419 | 167      | sDanielson |                             |
| 174      | 5/9/2020 17:56:54  | CTD911     | recover  | Seward Line | GAK5I   | 30   | 59.1916  | -148.8419 | 167      | sDanielson |                             |
| 175      | 5/9/2020 18:53:48  | CalVet net | deploy   | Seward Line | GAK6    | 17   | 59.1167  | -148.7727 | 147      | sDanielson |                             |
| 176      | 5/9/2020 18:57:49  | CalVet net | recover  | Seward Line | GAK6    | 17   | 59.1166  | -148.7729 | 147      | sDanielson |                             |
| 177      | 5/9/2020 19:21:39  | CTD911     | deploy   | Seward Line | GAK6    | 31   | 59.1165  | -148.7733 | 148      | sDanielson |                             |
| 178      | 5/9/2020 19:48:59  | CTD911     | recover  | Seward Line | GAK6    | 31   | 59.1195  | -148.7771 | 148      | sDanielson |                             |
| 179      | 5/9/2020 20:40:46  | CTD911     | deploy   | Seward Line | GAK6I   | 32   | 59.0449  | -148.7031 | 189      | sDanielson |                             |
| 180      | 5/9/2020 20:54:48  | CTD911     | recover  | Seward Line | GAK6I   | 32   | 59.0455  | -148.7063 | 189      | sDanielson |                             |
| 181      | 5/9/2020 21:38:27  | CalVet net | deploy   | Seward Line | GAK7    | 18   | 58.9721  | -148.6297 | 241      | sDanielson |                             |
| 182      | 5/9/2020 21:43:03  | CalVet net | recover  | Seward Line | GAK7    | 18   | 58.9728  | -148.6319 | 241      | sDanielson |                             |
| 183      | 5/9/2020 22:02:24  | CTD911     | deploy   | Seward Line | GAK7    | 33   | 58.9725  | -148.6298 | 241      | sDanielson |                             |
| 184      | 5/9/2020 22:35:19  | CTD911     | recover  | Seward Line | GAK7    | 33   | 58.9745  | -148.6373 | 241      | sDanielson |                             |
| 185      | 5/9/2020 23:35:20  | CTD911     | deploy   | Seward Line | GAK7I   | 34   | 58.8821  | -148.5615 | 301      | sDanielson |                             |
| 186      | 5/9/2020 23:49:44  | CTD911     | recover  | Seward Line | GAK7I   | 34   | 58.8821  | -148.5616 | 301      | sDanielson |                             |
| 187      | 5/10/2020 1:39:00  | Mooring    | deploy   | GEO         | GEO1    | NaN  | 59.0136  | -148.6900 | 230      | sDanielson |                             |
| 188      | 5/10/2020 1:44:49  | CTD911     | deploy   | GEO         | GEO1    | 35   | 59.0127  | -148.6892 | 232      | sDanielson |                             |
| 189      | 5/10/2020 2:13:52  | CTD911     | recover  | GEO         | GEO1    | 35   | 59.0127  | -148.6893 | 232      | sDanielson |                             |
| 190      | 5/10/2020 4:51:03  | CalVet net | deploy   | Seward Line | GAK4    | 19   | 59.4087  | -149.0492 | 198      | sDanielson |                             |
| 191      | 5/10/2020 4:56:29  | CalVet net | recover  | Seward Line | GAK4    | 19   | 59.4091  | -149.0497 | 198      | sDanielson |                             |
| 194      | 5/10/2020 5:17:19  | CTD911     | deploy   | Seward Line | GAK4    | 36   | 59.4099  | -149.0504 | 198      | sDanielson |                             |
| 195      | 5/10/2020 5:47:15  | CTD911     | recover  | Seward Line | GAK4    | 36   | 59.4099  | -149.0504 | 198      | sDanielson |                             |
| 196      | 5/10/2020 6:15:53  | multinet   | deploy   | Seward Line | GAK4    | 16   | 59.4109  | -149.0532 | 200      | rHopcroft  |                             |
| 197      | 5/10/2020 6:26:18  | multinet   | maxDepth | Seward Line | GAK4    | 16   | 59.4078  | -149.0428 | 200      | rHopcroft  |                             |
| 198      | 5/10/2020 6:55:58  | multinet   | recover  | Seward Line | GAK4    | 16   | 59.3998  | -149.0141 | 200      | rHopcroft  | WIRE OUT 300, MAX DEPTH 190 |
| 199      | 5/10/2020 8:11:21  | multinet   | deploy   | Seward Line | GAK3    | 17   | 59.5572  | -149.2027 | 217      | rHopcroft  |                             |
| 200      | 5/10/2020 8:21:28  | multinet   | maxDepth | Seward Line | GAK3    | 17   | 59.5540  | -149.1943 | 217      | rHopcroft  |                             |
| 201      | 5/10/2020 8:49:59  | multinet   | recover  | Seward Line | GAK3    | 17   | 59.5540  | -149.1943 | 217      | rHopcroft  | WIRE OUT 295M               |
| 202      | 5/10/2020 10:06:16 | multinet   | deploy   | Seward Line | GAK2    | 18   | 59.6963  | -149.3411 | 217      | rHopcroft  |                             |
| 203      | 5/10/2020 10:14:50 | multinet   | maxDepth | Seward Line | GAK2    | 18   | 59.6945  | -149.3357 | 236      | rHopcroft  |                             |

| Event.ID | Date               | Instrument          | Action    | Transect    | Station | Cast | Latitude | Longitude | Seafloor | Author     | Comment                          |
|----------|--------------------|---------------------|-----------|-------------|---------|------|----------|-----------|----------|------------|----------------------------------|
| 204      | 5/10/2020 10:40:55 | multinet            | recover   | Seward Line | GAK2    | 18   | 59.6904  | -149.3173 | 236      | rHopcroft  | WIRE OUT 242M                    |
| 205      | 5/10/2020 11:59:53 | multinet            | deploy    | Seward Line | GAK1    | 19   | 59.8527  | -149.4728 | 270      | rHopcroft  |                                  |
| 206      | 5/10/2020 12:08:24 | multinet            | maxDepth  | Seward Line | GAK1    | 19   | 59.8489  | -149.4704 | 270      | rHopcroft  |                                  |
| 207      | 5/10/2020 12:33:20 | multinet            | recover   | Seward Line | GAK1    | 19   | 59.8390  | -149.4603 | 270      | rHopcroft  | WIRE OUT 239M                    |
| 208      | 5/10/2020 15:06:15 | CTD911              | deploy    | Seward Line | GAK3I   | 37   | 59.4816  | -149.1157 | 202      | sDanielson |                                  |
| 209      | 5/10/2020 15:14:24 | CTD911              | recover   | Seward Line | GAK3I   | 37   | 59.4816  | -149.1157 | 202      | sDanielson |                                  |
| 210      | 5/10/2020 15:54:45 | CalVet net          | deploy    | Seward Line | GAK3    | 20   | 59.5537  | -149.1858 | 211      | sDanielson |                                  |
| 211      | 5/10/2020 15:57:48 | CalVet net          | recover   | Seward Line | GAK3    | 20   | 59.5540  | -149.1854 | 211      | sDanielson |                                  |
| 212      | 5/10/2020 15:57:51 | CalVet net          | recover   | Seward Line | GAK3    | 20   | 59.5540  | -149.1854 | 211      | sDanielson |                                  |
| 213      | 5/10/2020 16:24:02 | CTD911              | deploy    | Seward Line | GAK3    | 38   | 59.5541  | -149.1853 | 210      | sDanielson |                                  |
| 214      | 5/10/2020 16:54:01 | CTD911              | recover   | Seward Line | GAK3    | 38   | 59.5541  | -149.1853 | 210      | sDanielson |                                  |
| 215      | 5/10/2020 18:13:49 | CTD911              | recover   | Seward Line | GAK2I   | 39   | 59.6268  | -149.2587 | 211      | sDanielson |                                  |
| 216      | 5/10/2020 18:14:36 | CTD911              | deploy    | Seward Line | GAK2I   | 39   | 59.6268  | -149.2587 | 211      | sDanielson |                                  |
| 217      | 5/10/2020 18:56:29 | CalVet net          | deploy    | Seward Line | GAK2    | 21   | 59.6934  | -149.3286 | 221      | sDanielson |                                  |
| 218      | 5/10/2020 19:01:48 | CalVet net          | recover   | Seward Line | GAK2    | 21   | 59.6934  | -149.3286 | 221      | sDanielson |                                  |
| 219      | 5/10/2020 19:26:01 | CTD911              | deploy    | Seward Line | GAK2    | 40   | 59.6934  | -149.3286 | 225      | eRoth      |                                  |
| 220      | 5/10/2020 20:04:30 | CTD911              | recover   | Seward Line | GAK2    | 40   | 59.6934  | -149.3286 | 225      | eRoth      |                                  |
| 221      | 5/10/2020 20:51:49 | CTD911              | deploy    | Seward Line | GAK1I   | 41   | 59.7668  | -149.3971 | 258      | sDanielson |                                  |
| 222      | 5/10/2020 21:07:35 | CTD911              | recover   | Seward Line | GAK1I   | 41   | 59.7668  | -149.3971 | 258      | sDanielson |                                  |
| 223      | 5/10/2020 22:01:44 | CTD911              | deploy    | Seward Line | GAK1    | 42   | 59.8445  | -149.4678 | 270      | sDanielson |                                  |
| 224      | 5/10/2020 22:41:37 | CTD911              | recover   | Seward Line | GAK1    | 42   | 59.8445  | -149.4677 | 270      | sDanielson |                                  |
| 225      | 5/10/2020 22:50:57 | CalVet net          | recover   | Seward Line | GAK1    | 22   | 59.8445  | -149.4685 | 269      | rHopcroft  |                                  |
| 227      | 5/10/2020 23:07:00 | CalVet net          | deploy    | Seward Line | GAK1    | 22   | 59.8445  | -149.4677 | 269      | rHopcroft  |                                  |
| 226      | 5/10/2020 23:05:55 | CalVet net          | deploy    | Seward Line | GAK1    | 22a  | 59.8445  | -149.4689 | 269      | rHopcroft  | LIVE                             |
| 228      | 5/10/2020 23:10:11 | CalVet net          | recover   | Seward Line | GAK1    | 22a  | 59.8446  | -149.4699 | 269      | rHopcroft  |                                  |
| 229      | 5/10/2020 23:41:55 | CTD911              | deploy    | Seward Line | GAK1    | 43   | 59.8539  | -149.5051 | 260      | sDanielson | 2019 GAK1 MOORING CAL CAST       |
| 230      | 5/10/2020 23:59:40 | CTD911              | recover   | Seward Line | GAK1    | 43   | 59.8539  | -149.5051 | 260      | sDanielson |                                  |
| 231      | 5/11/2020 0:29:27  | Mooring             | recover   | NaN         | GAK1    | NaN  | 59.8527  | -149.5028 | 262      | sDanielson |                                  |
| 232      | 5/11/2020 2:35:40  | EK80                | stop      | NaN         | NaN     | NaN  | 59.8530  | -149.4975 |          | eRoth      |                                  |
| 233      | 5/11/2020 2:49:36  | centerBoard         | recover   | NaN         | NaN     | NaN  | 59.8530  | -149.4975 |          | eRoth      | flush position                   |
| 234      | 5/11/2020 2:51:37  | ADCP WH300          | stop      | NaN         | NaN     | NaN  | 59.8530  | -149.4940 |          | eRoth      |                                  |
| 235      | 5/11/2020 2:52:26  | OS75                | stop      | NaN         | NaN     | NaN  | 59.8537  | -149.4918 |          | eRoth      |                                  |
| 236      | 5/11/2020 4:34:33  | Science<br>Seawater | stop      | NaN         | NaN     | NaN  | 60.0672  | -149.3819 |          | eRoth      |                                  |
| 237      | 5/11/2020 4:35:52  | EM302               | stop      | NaN         | NaN     | NaN  | 60.0700  | -149.3835 |          | eRoth      |                                  |
| 240      | 5/11/2020 6:42:16  | Ship                | endCruise | NaN         | NaN     | NaN  | 60.0882  | -149.3887 |          | eRoth      | sitting in Res Bay for the night |