NGA-LTER Seward Line CRUISE PLAN July 3 - 18, 2018

Funding Source: NSF, NPRB, EVOS, AOOS, UAF

Chief Scientist: Russ Hopcroft, Zooplankton, rrhopcroft@alaska.edu Institute of Marine Science University of Alaska Fairbanks, AK 99775-1080 Phone: 907-474-7842 Mobile 907-699-3253

Co-Chief Scientist: Ken Coyle, Zooplankton, IMS-UAF (kocoyle@alaska.edu)

Scientific Personnel:

3 Jennifer Questel
4 Heidi Mendoza-Islas
5 Loring Schiable
6 Suzanne Strom
7 Kelly Bright
8 Clayton Mazur
9 Garrett Michael
10 Ana Aguilar-Islas
11 Barkha Singh
12 Jessica Pretty
13 Thilo Klenz
14 Daniel Cushing
15 Tobey Burke
16 Madison Herron
17 Per Fosstveit

Zooplankton (nights), UAF Zooplankton (nights), UAF Zooplankton (nights), volunteer Phytoplankton/Microzoop, WWU Phytoplankton/Microzoop, WWU Phytoplankton/Microzoop, WWU Phytoplankton/Microzoop, WWU Chemistry (Nutrients, Iron), UAF Chemistry (Nutrients, Iron), UAF Flux (Sediment Traps & UVP), UAF Flux (Sediment Traps & UVP), UAF Physics (CTD), UAF Seabirds/Mammals, FWS Seabirds/Mammals, FWS Microbes, UAF Teacher-at-sea (NY)

Scientific Purpose:

This cruise represents a continuation of sampling begun in fall 1997 under the NSF/NOAA NE Pacific GLOBEC program, and subsequently a consortium of the North Pacific Research Board (NPRB), the Alaska Ocean Observing System (AOOS), and the Exxon Valdez Oil Spill Trustee Council's (EVOSTC) Gulf Watch. This is the second cruise of the NSF's Northern Gulf of Alaska Long-term Ecological Program (NGA-LTER), and the first summer cruise since 2004. The scientific purpose of the core Seward Line project is to develop an understanding of the response and resiliency of this marine ecosystem to climate variability. This cruise marks the 9th summer cruise for the Seward Line in the NGA, including Prince William Sound (PWS), and the 48th year of observations at GAK1.

Cruise Objectives

- 1. Determine thermohaline, velocity, light, and oxygen structure of the NGA shelf.
- 2. Determine macro- and micro-nutrient structure of the NGA shelf.
- 3. Determine particle structure and flux rates of the NGA shelf.
- 4. Determine phyto- and microzooplankton composition, biomass distribution, and productivity.
- 5. Determine the vertical and horizontal distribution and abundance of zooplankton species (including macro-jellies).
- 6. Conduct surveys of seabirds and Marine Mammals
- 7. Conduct shipboard experimental work on phyto- and zooplankton.
- 8. Determine carbonate chemistry (i.e. Ocean Acidification) at selected intensive stations
- 9. Provide at-sea experience for students within the UAF system
- 10. Share the experience through outreach/media activities.

SAMPLING

The overall approach of the cruise is to occupy 4 transect lines across the shelf and a circuit within PWS. Operations are generally divided into distinct day and night tasks, thus requiring each station to be occupied twice. This structure avoids each discipline needing to supply 2 shifts of scientists and ensures all organisms – especially larger diel-migrating zooplankton – are captured with minimal time-of-day bias. During each morning we will typically occupy a selected "intensive" station that involves a greater number and range of collections than other stations occupied that day. Stations profiles are supplemented by underway measurements.

DAYTIME ACTIVITIES:

- 1. Occupy the various hydrographic stations and collect vertical CTD-fluorescence-PAR and particle profiles (see **Figures & Tables**).
- Collect discrete bottle samples at these stations for nutrients, chlorophyll and microzooplankton. Chlorophyll Size Fractionation (20 μm) will be done at all whole numbered Seward Line and most other stations. Macronutrients samples will be prefiltered prior to freezing. Chlorophyll will be extracted on fresh filters without freezing.
- 3. Measure the dissolved carbonate chemistry along the Seward Line and within Prince William Sound from bottle casts at selected intensive stations (tentatively GAK1, GAK5, GAK9, GAK13, PWS2).
- 4. CalVet Net casts will be done (CalVet frame has 4 nets) after most the CTD casts to 100m. (NO CALVETs at the "i" stations).
- 5. At intensive stations an additional CTD cast will collect water to be used for primary production incubations and carbonate chemistry
- 6. We will deploy a tow-body for sampling near-surface iron during the day (and on long transits). Sampling will occur just prior arriving to or just after departure. (It is hoped that this "fish" can simply be left in the water while on station rather than constantly retrieved and deployed). It is hoped this will not impact transit speed.
- At intensive stations there will be an extra Calvet collection, and along the Seward Line plus PWS2 there will be a vertical deployment of the 150 µm Multinet to 200m. Some of this material will be used for live sorting as well as post-cruise molecular analysis.

8. We will do one deep Multinet tow (to maximum 1200 m) near the end of the Seward Line and one at PWS2 (800m). This normally happens during days but may be done at night in conjunction with Multinet work at those stations if time permits.

NIGHTTIME ACTIVITIES:

- A towed 505-µm Multinet will be used to collected depth-stratified samples along the Seward Line, and at selected PWS Stations to 200m. Bongo nets will be used at all other stations to 200m. At intensive stations along the Seward Line and in PWS an additional collection will be taken with a Bongo net. When leaving intensive stations, a Methot Trawl will be deployed by crane for ~20 minutes while in route to the next station. Additional Methot trawls will be done as time permits.
- 2. Deep-multinet tows may occur during the night shift as time permits (see #8 above).

Sampling Strategy

In general, we estimate 2 days to complete the Kodiak Line, 1.25 days for Cape Suckling, 2 days for Middleton Island Line, 2.25 days for PWS and 4-5 days for the Seward Line. It is important that all Multinet collections (with the exception of those to 600m) be completed during darkness to allow comparison to prior years. We anticipate that 4-5 Multinet and/or Bongo stations can be conducted per night: sampling starts just after dusk and stops just before dawn, and can be extended slightly when overcast. In July, there is a much greater period of light available than of darkness, so execution of daytime stations and activities are designed around being in position to commence night sampling as soon as it is sufficiently dark.

Sampling personnel requirements (and times):

CTD: winch operator, 1-2 scientists (launch and recovery), 30m/min in upper 100m, 60m/min below 100m. Depending on schedule, casts may be limited to 1000m at deep-sea stations.

TMC towfish: 1 Deck person and 1 scientist for launch and recovery (~15-20 min), A deck person (or martec) to watch towfish during towing and communicate with the bridge/science.

Multinet or Bongo: winch operator, 2-3 scientists (launch, recovery, wash-down, re-cock) – Ship speed: 2 knots, Wire speed: ~1 m/sec down, 0.5-1m/sec up (typically 30-40min per deployment). Stern A-frame deployment. Maximum depth on tows 200m. Both systems will have depth transducers to ensure we get close to, but not on the bottom when depths are less than 200m.

Calvets & Ring nets: winch operator, 1-2 scientists (launch, recovery, wash-down) – Ship speed: station keeping, Wire speed: ~1 m/sec for Calvet, 0.5m/sec for Ring net (10 min/cast).

Methot Trawl: winch operator, 1-2 scientists, launch, recovery, wash-down) – Ship speed: ~4 Wire speed: ~1 m/sec for up and down tow-yo to 20m for 20 minutes.

Ship's Science Equipment Supplied:

- CTD (with deep-SUNA, UVP and LISST for integration)
- -40 freezer for macro-nutrient and genetic samples
- Underway sampling system (TSG, GPS) SBE45
- 10 cu ft refrigerator/freezer for chemical and preserved sample storage
- Fume hood for filtration of preserved samples

Scientist's Equipment Needed:

- Trace-metal clean towfish system (access to compress air) (Deck storage 3 palettes)
- Trace Metal Clean Van

- CalVet and ring nets [nets, flow-meters, frames, swivels, weights, spares]
- 2 Multinet system (coarse and fine nets, spare cod ends/nets)
- Bongo nets
- Deckboard incubators (4) connected to ship's seawater system
- Filtration systems
- Fluorometers & Centrifuge
- Laptop computers
- 16 cases (24/cs) of 16-oz zooplankton sample bottles
- 5 cases (12/cs) of 32-oz zooplankton sample bottles
- 3-4 cases of 24 Winkler bottles
- Several coolers with nutrient and TMC bottles
- Microscopes and supplies for handling and incubation of copepods
- Incubators: 4 cu ft. required near work area
- Refrigerated Circulators
- Milk Chocolate

Hazmat: (tentative)

Formaldehyde – 2x20L carboy Rose Bengal Stain 50g Ethanol – 40L. Acetone – 16L Lugol's solution (1L) Oxygen Fixation (Sodium hydroxide. Sulphuric acid, Manganous Chloride) Mercuric Chloride (for DIC fixation) 3N HCI (25% v/v) (500 ml) Glutaraldehyde (10%) – 500 ml DAPI stain solution – 100 ml Liquid N_2 – one 30-L dewar

CRUISE ACTIVITY SCHEDULE

- 7/1 Main science party leaves Fairbanks ~8am, pickups in Anchorage (~4pm), arrives Homer ~8-9pm, overnights on ship
- 7/1 Hopcroft flies to ANC, pickup equipment & Strom, drive to Seward & pickup up UHaul to move science equipment to Homer
- 7/2 Science party begins mobilization ~8am, sets up, science party sleeps on board
- 7/3 Woldstad sails ~8am, heads to Kodiak Line
- 7/18 Woldstad return to Homer by 8pm offload before midnight. Science party stay overnight on vessel
- 7/19 Science party departs for Anchorage and Fairbanks

Berthing: Chief – Russ

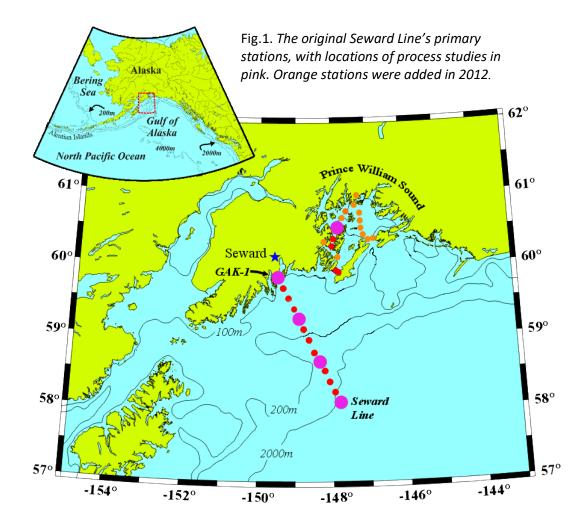
Chief – Russ 4bunk: Kelly, Barkha, Jess, Madison

3bunk: Dan, Tobey, Per

- 3bunk: Clayton, Garrett, Thilo
- 3bunk: Suzanne, Ana

3bunk: Jenn, Heidi (nights)

2bunk: Ken, Loring (nights)


Transport:

Flying: Jess, Kelly, Clayton, Garrett, Per, Ana Rental & UHaul: Russ, (Dan?), Suzanne UAF Van: Jenn, Heidi, Ken, Lorring, Barkha, Madison, Thilo, (Dan?) In Homer: Tobey

Latitude N Longitude W								
(degr	rees, minutes)	(degree	s, minutes)	Station Name				
Resurrection Bay Station								
60	1.5	149	21.5	RES2.5				
Seward Line								
59	50.7	149	28	GAK1				
59	46	149	23.8	GAK1I				
59	41.5	149	19.6	GAK2				
59	37.6	149	15.5	GAK2I				
59	33.2	149	11.3	GAK3				
59	28.9	149	7.1	GAK3I				
59	24.5	149	2.9	GAK4				
59	20.1	148	58.7	GAK4I				
59	15.7	148	54.5	GAK5				
59	11.4	148	50.3	GAK5I				
59	7	148	46.2	GAK6				
59	2.7	148	42	GAK6I				
58	58.3	148	37.8	GAK7				
58	52.9	148	33.6	GAK7I				
58	48.5	148	29.4	GAK8				
58	44.6	148	25.2	GAK8I				
58	40.8	148	21	GAK9				
58	36.7	148	16.7	GAK9I				
58	32.5	148	12.7	GAK10				
58	23.3	148	4.3	GAK11				
58	14.6	147	56	GAK12				
58	5.9	147	47.6	GAK13				
57	56.6	147	39	GAK14				
57	47.5	147	30	GAK15				
	Prin	nce William Sou	Ind Stations	1				
60	7.5	147	50	KIP0				
60	16.7	147	59.2	KIP2				
60	22.78	147	56.17	PWS1				
60	32.1	147	48.2	PWS2				
60	40	147	40	PWS3				
60	4925	147	24	PWSA				
60	45	147	14	PWSB				
60	38.1	147	10	PWSC				
60	31.5	147	7.6	PWSD				
60	24.3	147	58.3	PWSE				
60	24	146	45	PWSF				
Columbia Glacier								
61	7.4	147	3.8	CG0				
60	59.5	147	4.2	CG1				
60	57.6	147	5.9	CG2				

Table 1. STANDARD STATIONS (intensive stations highlighted)

Icy Bay							
60	16.3	148	21.7	IB0			
60	15.5	148	20.1	IB1			
60	16.3	148	14	IB2			
Hogan Bay Line							
60	11.57	147	42	HB1			
60	10.754	147	38.5	HB2			
60	9.855	147	34.508	HB3			
60	8.807	147	30.04	HB4			
Montague Strait Line							
59	57.257	147	55.602	MS1			
59	56.6	147	53.7	MS2			
59	55.9	147	51.4	MS3			
59	55.2	147	49.7	MS4			

Latitude N Longitude W						
(degr	ees, minutes)	(degrees, minutes)		Station Name		
ГQ	14.7	Kodiak Li	ne 35.4	KOD1		
58 58		151		KOD1		
58	7.8	151 151	23.07	KOD2		
58	0.9 54	151	10.74 58.17	KOD3 KOD4		
57	47.1	150	45.6			
57	40.26	150	32.97	KOD5 KOD6		
-						
57 57	33.42	150 150	20.34	KOD7		
57	26.37 19.32	149	7.95	KOD8 KOD9		
57	12.27	149	43.17	KOD10		
50		Cape Sucklin		CC1		
59	56.35	143	53.5	CS1		
59	53.85	143	53.5	CS1e		
59	51.35	143	53.5	CS1i		
59	48.85	143	53.5	CS1n		
59	46.35	143	53.5	CS2		
59	41.35	143	53.5	CS2i		
59	36.35	143	53.5	CS3		
59	31.35	143	53.5	CS3.5		
59	26.35	143	53.5	CS4		
59	16.35	143	53.5	CS5		
<u> </u>	45	Middleton Isla				
60	15	145	30	MID1		
60	10.5	145	34.5	MID1i		
60	6	145	39	MID2		
60	1.5	145	43.5	MID2i		
59	57	145	48	MID3		
59	52.5	145	52.5	MID3i		
59	48	145	57	MID4		
59	43.5	146	1.5	MID4i		
59	39	146	6	MID5		
59	34.5	146	10.5	MID5i		
59	30	146	15	MID6		
59	25.7	146	10	MID6i		
59	23	146	18	MID7		
59	18.267	146	15	MID7i		
59	13.534	146	12	MID8		
59	4.067	146	6	MID9		
58	54.6	146	0	MID10		

 Table 2. New LTER Stations (intensive stations highlighted)

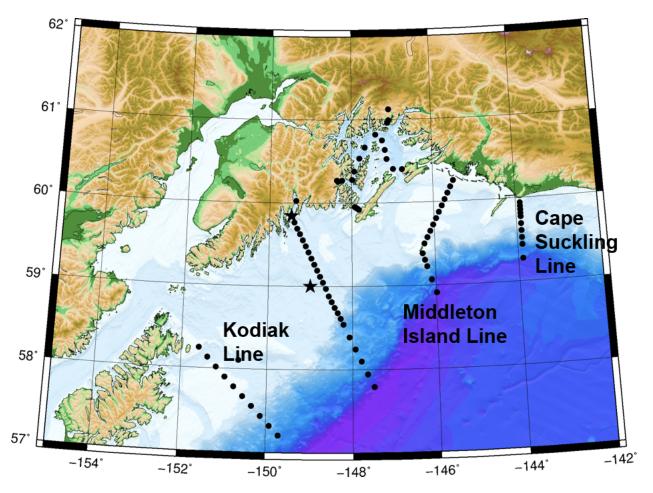


Fig. 2. NGA-LTER sampling stations highlighting 3 new transects line near Kodiak, Middleton Island and Cape Suckling