Phytoplankton Dynamics across Hydrographic Fronts and Mesoscale Features: Preliminary Results from the New NGA-LTER Ocean Optics Program ## Benjamin F. Lowin, William J. Burt College of Fisheries and Ocean Sciences, University of Alaska Fairbanks Contact: bflowin@alaska.edu ### Background • Understanding **patterns of primary production** is of utmost importance for goals ranging from maintaining marine food webs, to healthy fisheries, to sustainable food resources for humans. Greetings - This understanding is impeded in highly dynamic regions such as the Northern Gulf of Alaska (NGA). - I am employing a **novel bio-optical** approach that compiles a range of biological estimates (including primary productivity) at **sub-kilometer spatial scales**. - These data can **resolve changes in biological properties across hydrographic frontal systems and eddies**, oceanographic features thought to drive many of the observed patterns in primary production. - The first step in **my PhD research is to validate the bio-optical approach** by comparing measurements from the underway optical system to biological samples. - The project is tightly linked with the large multi-disciplinary Northern Gulf of Alaska Long-Term Ecological Research (NGA-LTER) program, which provides our group with discrete biological measurements to perform these on-station validation matchups. # Results: Map of region. 500°N 58°N Figure 1: 2020 July cruise track (2nd to 16th) and discrete sampling sites. The chlorophyll data is from the VIIRS satellite on the 3rd of July. The boxes (b and c) denote the regions in the cruise track expanded on the right. ## Methods - The underway system pumps water through two optical instruments: - 1. A hyperspectral absorption and attenuation meter (AC-S). - 2. An ECO-BB3 for measurement of the volume scattering function at 117° at 470nm, 532nm, and 650 nm - Each hour, an automated 3-way valve diverts water through filtration array to measure 'water-only' optical properties. Optical properties of 'particles' are then determined by subtraction: Total (water + particles) – 'water-only' = Particles • Data comes through in **real time** and the instrument requires little maintenance **Figure 2 : a-** Line height absorption at 676 nm vs chlorophyll. **b-** System setup for the underway optics on the R/V Sikuliaq following the methods in Burt el al. 2018. ## Results: Chlorophyll **Figure 3:** Underway optics chlorophyll estimates (black dots) comparted to discrete HPLC samples (red circles). **a-**the full July cruise track with boxes showing the expanded portions, **b-**the area surrounding Middleton Island and **c-**the transition from HNLC to shelf waters. ## Summary - The Chlorophyll estimates from the Bio-optical system **closely match** the discrete samples. - Our **high-resolution measurement technique captures numerous features** that are not resolved using traditional discrete sampling techniques.