Grazing by mixotrophic nano- and dinoflagellates in the Northern Gulf of Alaska in response to gradients in light, inorganic nutrients, and prey availability

Hana Busse1, busseh@wwu.edu
Jerome Fiechter2, Suzanne Strom1
1. Shannon Point Marine Center, Western Washington University
2. University of California, Santa Cruz

Background
At the base of marine food webs are many single-celled planktonic organisms that are capable of both feeding and photosynthesizing (i.e. "mixotrophs"). In laboratory studies, mixotrophs have shown increased growth rates and enhanced photosynthetic ability compared to pure autotrophs. Global ocean models that account for mixotrophy show increases in carbon flux and trophic transfer efficiency. Mixotrophic species have been observed across the Northern Gulf of Alaska (NGA) and may contribute to the highly productive nature of the region and help buffer the ecosystem to seasonal and annual variability.

Feeding by mixotrophic flagellates in summer is a nutrient acquisition mechanism
Feeding by mixotrophic flagellates was highest at high light and low ammonium levels, indicating that this trophic strategy is likely driven by a need for key nutrients to support growth.

Does feeding by phytoflagellates respond to changes in light, inorganic nutrients or prey concentration?
Is natural ingestion by NGA phytoflagellates linked to environmental conditions?

Manipulation Experiments
Experiments were conducted at 7 sites across the NGA. At each site, three parallel experiments examined feeding responses to gradients in ambient light, inorganic nutrients and prey (Synechococcus) concentration.

1. Water was collected from the 50% light level
2. Carefully transferred to 250ml bottles
3. Initial samples were taken to observe background ingestion, prey concentration and inorganic nutrients
4. Experimental gradients were created by adding N+P, cultured Synechococcus, and layers of neutral density screen
5. Bottles were incubated on deck for 4 h before subsamples were fixed, stained, filtered (2 µm) and frozen for microscopy

Natural Ingestion
Samples were taken to observe phytoflagellate grazing in situ on naturally occurring Synechococcus at sites across the NGA and Prince William Sound. Levels of ingestion were compared to gradients in environmental conditions.

Images of nano- and dinoflagellates under 1000x epifluorescence illumination. Red autofluorescence of chlorophylls allowed for determination of inherent photosynthetic ability and yellow autofluorescence of Synechococcus was used to observe ingestion. Cell sites ranged from 2-5um and 5-10um for nanoflagellates and dinoflagellates, respectively. Morphological characteristics were used to classify organisms.

Results
- Across stations ~10% of photosynthetic nanoflagellates and dinoflagellates contained ingested Synechococcus
- In manipulation experiments ingestion increased with prey concentration and light availability
- Natural ingestion decreased with increasing ammonium concentration

Circles and triangles indicate stations sampled for natural ingestion and environmental properties. Triangles represent stations where manipulation experiments were conducted.

Images of nano- and dinoflagellates under 1000x epifluorescence illumination. Red autofluorescence of chlorophylls allowed for determination of inherent photosynthetic ability and yellow autofluorescence of Synechococcus was used to observe ingestion. Cell sites ranged from 2-5um and 5-10um for nanoflagellates and dinoflagellates, respectively. Morphological characteristics were used to classify organisms.

Acknowledgements
I would like to thank the captain and crew of the R/V Sikuliaq and the entire NGA LTER team. Special thanks to Kerri Fredrickson, Kelley Bright and Jake Lawlor. This research was made possible by the National Science Foundation (grant #1656070) and the North Pacific Research Board (grant #NA15NMF4703173, 1703).
