

Quantifying Phytoplankton Biomass and Productivity at Unprecedented Spatial Scales using Ship-Board Optics

William J. Burt¹, Russel R. Hopcroft¹, Seth Danielson¹, Suzanne L. Strom²

¹College of Fisheries and Ocean Sciences, UAF; ²Shannon Point Marine Center, WWU

The Dilemma

Phytoplankton biomass & productivity in the Northern Gulf of Alaska feeds the entire marine ecosystem

AND is likely to change due to increasing SST & freshwater input

However, the dominant patterns & controls on productivity remain poorly understood Why?

A reliance on chlorophyll as the principle proxy

An inability to make measurements 200 - 200 on time/space scales that capture the intense variability of the region

Seeing the light!

The size, shape & concentration of particles can be estimated by measuring inherent optical properties of water

THE KEY: Measurements of light can be made extremely rapidly

The underway optical sampler

Multi-parameter high-resolution in-situ biogeochemistry

&Biomass Physiology **Productivity**

Physics (+T, PAR)

Chemistry

Moving from on-station to underway measurements

Chl ≠ **Production** Understand how/where drives production & by how much

û Chl = diatom-rich = ↓ C:Chl □ Chl = pico-rich = ① C:Chl

Quantify what

Both regionally and at productive 'hot-spots'?

Satellite Validation

High-resolution data facilitates detailed match-up analysis

THE NEXT BIG QUESTION:

How can these data be applied to improve biogeochemical / ecosystem models?

FUTURE PLANS:

- Add 'acidification module' to assess importance of calcifiers
- Develop methods for HAB detection
 - Find great students!