Mixotrophy in the Gulf of Alaska: Abundant plant-animal cells have major implications for ecology and biogeochemistry

Suzanne Strom, Kelley Bright, Kerri Fredrickson Western Washington University

Mixotrophy: multiple modes of nutrition in a single organism

Photosynthesis + Feeding:

Venus fly trap: a plant that eats

Stony corals: an animal – algal association

Many marine protists are mixotrophs:

"phytoplankton" & "microzooplankton"

Two main strategies:

Steal and retain chloroplasts from prey:

ciliates, a few dinoflagellates C subsidy

Supplement constitutive photosynthesis with feeding:

many flagellate 'phytoplankton' incl. dinoflagellates

nutrient subsidy

Questions:

- 1. How common and abundant are NGA mixotrophs?
- 2. What is their potential impact on the ecosystem?

Identifying mixotrophs:

Chloroplast-retaining ciliates

Identifying mixotrophs:

Photosynthetic dinoflagellates that eat

Blue ex: chl UV ex: nuclei Light Ceratium spp. Misc autotrophic dinos Blue ex: chl with ingested cyanobacteria We know that nearly all photo dinos can eat (Jeong et al.) Protoperidinium sp. NOT A MIXOTROPH

SPRING 2018

Ciliate community composition

Mixotrophs (chloroplastretaining ciliates)

Ciliate community composition

Median % mixotrophs:

Spring 47 Summer 35 Fall 58

SPRING 2018

Dinoflagellate community composition

Mixotrophs (photosynthetic dinoflagellates)

Dinflagellate community composition

Median % mixotrophs:

Seward Line

PWS

Spring 28 Summer 25 Fall 76

Contribution to Chlorophyll-a:

Chloroplast-retaining ciliates:

C per cell from cell volume & conversion factors

Chl-a per cell from direct measurements

Median ciliate C:chl = 118 (Spring 2018)

Ciliate contribution to >20 µm Chl-a:

	Median	Min	Max
Spring	1%	0%	24%
Summer	42%	4%	85%
Fall	2%	0%	11%

In summer, chloroplast-retaining ciliates could be half or more of the large "phytoplankton"

Feeding potential

Photosynthetic dinoflagellates:

Summer 2018 Prince William Sound

Abundant 12 µm thecate photosyn dino

Abundant naturally occurring *Synechococcus*

Cultured
high-latitude
Synechococcus

Incubate on deck 24 h; fix; assess 100 dinos per rep

CONTROL (3x)

PREY ADDED (3x)

Potential for experiments assessing environmental effects on predation by mixotrophs

Fascinating species

Mesodinium rubrum: a mixotrophic ciliate

Cryptophyte algae: obligate prey

Ciliate *Mesodinium rubrum*: long-term retention of cryptophyte chloroplasts

Dinoflagellate

Dinophysis sp.: must feed on M. rubrum, retains chloroplasts from ciliate

Mesodinium as % of mixotrophic ciliate biomass:

	Median	Min	Max
Spring	43%	6%	93%
Summer	37%	3%	86%
Fall	18%	0%	56%

PERSISTENT and IMPORTANT

Fascinating species

Torodinium sp.: a ?? dinoflagellate

Nothing in the literature about *Torodinium* having or acquiring chloroplasts

Consequences of mixotrophy for planktonic ecosystem:

Mixotrophy increases

- average particle size
- export flux

Conclusions (preliminary!)

- Mixotrophic dinoflagellates and ciliates are common and often abundant in the northern Gulf of Alaska
- They can contribute substantially (25 75%, on average) to "microzooplankton" biomass
- In summer, chloroplast-retaining ciliates comprised ~half of the large "phytoplankton"
- Through efficient C and nutrient acquisition and retention, mixotrophs can alter fundamental ecosystem properties

What's wrong with this food web?

Mixotrophs from NGA: Chloroplast-retaining ciliates Fall 2017

Mixotrophs from NGA: Photosynthetic dinoflagellates that feed

